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Abstract 

Learner-centered teaching supports student engagement in meaningful mathematics, student 

collaboration for sensemaking and equitable instructional practices. Studies have described 

implementations of learner-centered teaching methods in tertiary settings. However, these 

were more focused on students outcomes, rather than on the processes of learning. Moreover, 

some researchers claimed there are drawbacks to inquiry-based and discussion-based 

teaching. These include learning without an expert, distracting social interactions and 

ineffectual communication in groups. Thus, this study had two goals. The first was to adapt 

instructional practices, shown to promote discourse-rich explorative participation, to a 

university linear algebra setting. The second goal was to examine learner-centered tertiary 

teaching and the processes involved to better understand what supports and what hinders 

student learning in this setting.  

I pursued these goals through the use of the sociocultural commognitive framework, which 

has operational tools for describing and analyzing mathematical learning processes. The 

framework’s holistic treatment of content, as well as social and teaching-learning 

interactions, allowed the examination of whole-class discussions, and learner-learner 

interactions in workshops. The workshops were designed as extra-curricular enrichment for 

science and engineering students. Data analysis included, first, examination of the potential 

of tasks designed for these workshops to support explorative participation. Next, the extent 

that opportunities for explorative participation were taken up in the whole classroom 

discussion was studied. Finally, the learning processes in small groups of students were 

examined.  

Based on a previously developed tool named the Realization Tree Assessment, I developed a 

tool called the Discourse Mapping Tree (DMT), for mapping the potential of the tasks 

through analyzing the subdiscourses that this task would invite. An extension of this tool, the 

Discussion Discourse Mapping Tree (DDMT), was used to map the actual implementation of 

the task in the whole classroom discussions. The learning processes in small groups were 

examined through an analysis of the mathematizing using the DDMT tool and commognitive 

tools. The communication channels in students’ peer-learning episodes were also examined.  

The DMT and DDMT offered the opportunity to distinguish between object-level learning, 

where students develop new narratives about familiar objects, and meta-level learning, where 

students make new connections between realizations of objects treated as different. The 

analysis revealed that the designed tasks afforded opportunities for both object-level learning 

and meta-level learning and, in most cases, the whole-class discussions included numerous 

opportunities for meta-level learning. However, the small group discussions did not support 

meta-level learning. Object-level learning in peer discussions was supported only when the 

students’ communication patterns supported learning and the student’s objectification process 

was sufficiently advanced.  

This study has practical, methodological and empirical implications. Practically, the tasks can 

be used by other instructors and utilizing the insights from this project, new tasks can be 

developed. Methodologically, the operational method of examining tasks and mathematical 

discussions can be used for other topics and other levels. Finally, this study showed that 

lesson-design in inquiry-based teaching should be attuned to the difference between object-
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level learning and meta-level learning, and the teaching methods chosen should be suited to 

the type of learning required. 

 

List of symbols and abbreviations 

RTA – Realization Tree Assessment 

A tool used for mapping realizations mentioned during a discussion (Weingarden et al., 

2019). An RTA is a visual representation of realizations of a mathematical object and the 

connections between them.  

DMT – Discourse Mapping Tree 

A tool developed in this study to map a mathematical object by the subdiscourses available. 

(Introduced in Section 4.3.1) 

DDMT – Discussion Discourse Mapping Tree 

A tool developed in this study, based on the DMT, to map the narratives mentioned during a 

discussion by the subdiscourses used. (Introduced in Section 4.3.2)  
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1 Introduction 
The Talmudic sages of the Great Assembly codified the Jewish daily prayers and included the 

request to give our hearts the understanding to learn, to teach, to keep and to do (Melamed, 

2003, Chapter V). This coupling of verbs was meant to emphasize that active involvement is 

necessary for productive teaching and meaningful learning (Sherlo, 2020). Additionally, the 

Bible exhorts us to teach each student according to his way (Proverbs 22:6), that is to choose 

teaching methods that consider the student’s needs. This type of teaching is labelled active, 

learner-centered teaching in modern literature, and has been extolled and encouraged by 

researchers and practitioners in all types of educational contexts.  

Learner-centered instruction, where students are engaged and involved in meaningful 

learning activities, includes active learning methods which seek to involve students in 

reading, writing, discussing, solving, analyzing, synthesizing, and evaluating problems. These 

have proven productive in all levels of mathematics education - K-12 (e.g. Schoenfeld, 2014) 

and tertiary (e.g. Chappell & Killpatrick, 2003; Cline et al., 2013; Talbert, 2014; Wawro et 

al., 2012). Studies encouraging such instruction in the tertiary level have posited the 

importance of student engagement in meaningful mathematics, student collaboration for 

sensemaking, instructor inquiry into student thinking and equitable instructional practices 

(Laursen & Rasmussen, 2019). Along with the broadening of practical experience of learner-

centered instruction in tertiary mathematics classrooms, the research community has started 

discussing the productiveness and suitability of incorporating these types of non-traditional 

teaching methods into lectures and tutorials in university mathematics (Shalit, 2021; Wieman, 

2007). This discussion includes an international consortiums of mathematics departments 

which are developing a community for supporting change in university mathematics 

education (Gomez Chacon et al., 2021). The developed and implemented active, learner-

centered workshops presented in this study are part of this effort. 

In the present study, workshops were developed to encourage student explorative 

participation in linear algebra courses. Student engagement is crucial for all university 

mathematics courses, and in particular in linear algebra courses.  A student’s success in their 

first semester mathematics courses impacts on their confidence and self-motivation - 

important factors in student engagement and future success in university courses (Varsavsky, 

2010). Varsavsky found that, independent of the level of the student’s previous mathematical 

background, the more successful a student was in a first course in university mathematics, the 

more advanced mathematics courses the student subsequently enrolled in. On the other hand, 

failure in a first course could lead to complete student disengagement from mathematics. 

Linear algebra is a mandatory first year course in nearly all post-high school science and 

engineering programs, as it is an essential tool for all engineering and science students. Thus, 

student success in linear algebra courses is important both for the content, which furnishes 

students with tools they need for their future academic and industrial careers, and for the 

affective considerations towards their future academic engagement and success. 

For the past 25 years I have been teaching tutorials in various university mathematical 

courses, mostly in linear algebra. Initially, my teaching practices included solving problems 

on the board to model problem solving techniques and formal proof writing. With experience, 

my teaching practices evolved to include more active learning and in-class discussions. 

Education courses intended for secondary school mathematics teachers exposed to me the 
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benefits and advantages of active, student-centered teaching methods. Later, I became aware 

of the existence of a wealth of documented practices and research in this area. I thus searched 

for a means of incorporating these practices into existing linear algebra courses using a well-

defined, methodical approach to support student explorative participation and student 

learning and to examine these practices. 

In pursuing my goal to design and study these workshops, I needed a holistic theoretical 

framework that would allow me to analyze the processes involved in learning and the 

mathematical content concomitantly. The process, and not only the outcome, of learning is 

important as learning mathematics cannot be described merely by scores on an exam. 

Students can solve a task without comprehending the underlying mathematical notions, as 

evidenced by their inability to solve a similar task worded differently (Sweller & Cooper, 

1985). Additionally, studying mathematical activity from a sociological perspective 

highlights the importance of social processes that influence student mathematical learning 

(Lave, 1988). The commognitive framework (Sfard, 2008) has a well-defined method of 

describing and analyzing learning processes in mathematical classrooms that studies learning 

in the context of the social interactions involved and the surrounding culture. This framework 

also allowed me to study processes of communication in the classroom, particularly from a 

holistic perspective attending to content and social interactions concomitantly (Heyd-

Metzuyanim & Sfard, 2012). Thus, this is the theoretical framework selected to use in this 

study. 

There were two main goals of this study. One goal was to adapt instructional practices, 

shown to promote discourse-rich explorative participation in elementary and secondary 

schools, to a university linear algebra course to support and encourage student participation 

and learning. Adapting these instructional practices included designing tasks and lesson plans 

aimed at promoting discourse-rich explorative participation in tertiary mathematics courses. 

These were implemented in discussion-based workshops in linear algebra courses in a science 

and engineering university.  The second goal was to explore an implementation of the above 

adaptation to better understand the processes of learning in university settings in terms of the 

content and the social interactions involved.  

In the following chapters I first present, in Chapter 2, the theoretical background including 

the existing research pertaining to learner-centered instruction in undergraduate mathematics 

education, to learning and teaching linear algebra and to teaching practices that support 

explorative participation. I next present the commognitive framework, the theoretical 

framework used in this study. In Chapter 3 I present the research goals and research 

questions, and the methodology used to answer the questions posed is presented in Chapter 4. 

The findings of this study are presented in Chapters 5, 6 and 7. Finally, in Chapter 8, I 

summarize the findings and the conclusions drawn from these findings pertaining to student 

explorative participation in linear algebra. 
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2 Theoretical Background 
In this chapter I first describe learner-centered instruction in undergraduate mathematics and 

then focus on learning and teaching linear algebra. Next, teaching practices that encourage 

explorative participation are described. The commognitive framework is then introduced and 

explained. Finally, a short summary of the various aspects involved in this study – 

mathematical content, mathematical practice, student participation and their intertwined 

connection – is presented. 

2.1 Learner-centered instruction in undergraduate mathematics education 
Many undergraduate mathematics educators have been incorporating discussion-rich, active 

methods into their teaching, even before such methods were formally defined. Already in 

1911 the disreputable Prof. R. Moore (Mahavier, 1999) documented his teaching style, which 

included student inquiry. More traditional, teacher-centered methods, such as lectures, are 

considered cost-efficient, as many students can be taught simultaneously, and exact 

formulations of concepts and processes can be presented to the students. Additionally, 

lecturing is a means of modelling mathematical discourses (Viirman, 2021). However, the 

traditional methods are not necessarily effective for robust learning. Biggs and Tang (2007) 

claim that the teaching methods in universities need to be learner-centered, because effective 

teaching necessitates that students be engaged and involved in learning activities such as 

relating, applying and theorizing – and not just memorizing (Biggs & Tang, 2007). Using 

learner-centered teaching methods requires a lot of time and effort from the lecturer, as well 

as the cooperation of the students (Legrand, 2001). Yet, the benefits of this type of teaching 

to the students’ learning are manifold. Exam outcomes were positively impacted in first year 

engineering mathematics courses from deep learning behavior (Griese & Kallweit, 2017). 

Students learning in more learner-centered mathematical university courses displayed higher 

self-efficacy levels and experienced the learning environment more favorably (Lahdenperä et 

al., 2019). 

Learner-centered teaching includes practices that support students actively taking charge of 

their own learning, becoming self-regulated, and developing their own study paths (Pepin et 

al., 2021). Learner-centered teaching practices can benefit student learning, attitudes, success 

and persistence in mathematics and related fields (Laursen & Rasmussen, 2019), among other 

positive outcomes (Griese & Kallweit, 2017; Ju & Kwon, 2007; Lahdenperä et al., 2019; 

Laursen et al., 2014). There have been various interventions in university courses attempting 

to provoke student engagement and involvement using learner-centered teaching methods. 

There are many studies focusing on active teaching methods in various scientific disciplines 

(e.g. Kimmel & Volet, 2010; Tal & Tsaushu, 2018). Some examples of various learner-

centered methods incorporated in mathematics courses include classroom voting via 

technological aids (Cline et al., 2013), Project Based Learning (Talbert, 2014) and flipped 

classrooms (Love et al., 2014). These, and other active teaching methods, have been used to 

support student engagement, evoke student motivation and allow students to work on 

complex tasks with the active guidance of an instructor (Talbert, 2014). These were most 

successful, as measured by student academic success, when implemented in courses which 

also modified the curriculum and the assessment methods to accommodate the teaching 

method (Vithal et al., 1995).  

The studies describing the implementations of learner-centered teaching in tertiary 

mathematics classrooms focus mainly on the teaching methods and the outcomes of these 
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implementations. Below I describe in more detail some implementations that used group 

learning episodes and discussion as part of their learner-centered teaching methods in tertiary 

mathematics classes. 

Rasmussen and Kwon (2007) implemented learner-centered instruction in an undergraduate 

differential equations course by designing inquiry-oriented instructional sequences with 

resources and teacher materials. They report that students’ participation in an implementation 

of this contributed to a positive transformation in the students’ beliefs  about mathematics and 

themselves as participants in mathematical discourse (Ju & Kwon, 2007). Ju and Kwon posit 

that this was due to real context problems, the emphasis on students’ own resources, the 

instructor’s guidance in developing a sense of authorship and ownership of knowledge and 

the decentralized structure of the course. Moreover, they explain that these practices 

supported new understandings of students, at a higher level.  

Discussion based teaching has been suggested as a learner-centered method that supports 

meaningful student participation in mathematical discussions. Tabach and colleagues 

(Hershkowitz et al., 2014; Tabach et al., 2020) used such an approach in both middle school 

and tertiary mathematics classrooms and analyzed them using a networking of two methods 

to examine collaborative mathematical activity in such a context. Both episodes included 

small group discussions and whole class discussions. The tertiary episode in a differential 

equations course was part of a larger study examining undergraduate student learning 

(Stephan & Rasmussen, 2002). This approach was used to support students’ meaningful 

mathematical activity of recreating mathematical ideas in a bottom-up manner. Stephan and 

Rasmussen characterized the collective learning in this context in terms of the mathematical 

practices, specific to differential equations, that emerged during the many sessions in a 

complex, non-sequential, non-linear manner. Hershkowitz and colleagues (2022) also used 

this classroom procedure of discussion in small groups and then reporting to the class about 

properties of fractals. The discussion about these infinitely constructed objects demonstrated 

that this method was successful and sparked meaningful discussions that supported student 

learning.  

In addition to the success of the various implementations described above, Laursen and 

colleagues (2014) compared more traditional teaching with Inquiry Based Learning (IBL), 

which is a learner-centered teaching practice that uses carefully designed sequences to invite 

students to work out meaningful, unstructured problems. They used quantitative analysis and 

found that there were greater learning gains in IBL and equitable results with respect to 

gender. Additionally, student interest and confidence levels rose in IBL courses, and this too 

also displayed no difference between genders, as opposed to non-IBL courses that usually 

display gender-based differences. They suggest that this is due to the different characteristics 

of teaching practices involved that support deep engagement with meaningful mathematics 

and collaborative processing of mathematical ideas.  

Along with the advantages of learner-centered teaching, there are also some deterrents in 

active, group-based learning described in the literature. First of all, time constraints and 

financial resources must be taken into consideration when planning to incorporate such 

methods into university courses (Talbert, 2014). In addition, there is an inherent risk that 

learning without an expert might be arbitrary and not advance toward the planned  goal 

(Vithal et al., 1995). Another factor inhibiting learning in group work is affective 

considerations. Unequal identities of gender, race and the like affect learning outcomes and 
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collaboration in STEM education at university levels (Carlone & Johnson, 2007; Johnson et 

al., 2020). 

To conclude, many implementations of learner-centered teaching, and specifically, 

discussion-based teaching and group learning activities, in tertiary mathematics have 

supported student learning, student interest, student confidence, student outcomes and student 

engagement. The studies documenting these examined aspects of teacher activity, adapted 

innovative instruction to the undergraduate level, and studied student thinking. They 

discussed positive academic outcomes and also positive outcomes such as meaningful 

participation, creation of new understandings, and meaningful mathematical activity. These 

studies rarely examine holisiticly the design of the tasks set by the instructor, the instructor’s 

implementation of the design, the students participation, the mathematical content and the 

intertwining of all of these. Little is known about how these various aspects encourage 

explorative participation. This is particularly important in linear algebra, where less is known 

about how such participation is involved in tertiary level mathematics learning processes.  

2.2  Learning and teaching linear algebra 
Linear algebra is a compulsory first year course in nearly all post-high school science and 

engineering programs, as it is an essential tool for all engineering and science students. 

Students’ success with their first mathematics courses impacts on their confidence and self-

motivation - important factors in student engagement and future success in university 

mathematics courses (Varsavsky, 2010). Varsavsky found that, independent of the level of 

the student’s previous mathematical background, the more successful a student was in a first 

course in university mathematics, the more advanced mathematics courses the student 

subsequently chose to learn. On the other hand, failure in a first course led to complete 

student disengagement from mathematics. Thus, supporting student learning in linear algebra 

courses, which are often the first mathematics courses students enroll in, is vital for the 

students’ future academic career, both for the mathematical tools and content learned in the 

course and for the affective impact on their learning in other courses. 

Some research has been done on learning and teaching university level linear algebra, 

including studies of the difficulties students face and the types of thinking necessary for a 

students to gain conceptual understanding (Britton & Henderson, 2009; Harel, 2002). Dorier 

and Sierpinska (Dorier & Sierpinska, 2001; Selinski & Rasmussen, 2014; Sierpinska, 2000) 

claim that lecturers should explicitly state that assorted mathematical representations are the 

same object so that the student is aware of the equivalence of the various representations 

being studied. If a student comprehends that all the representations are indeed the same thing, 

student understanding and conceptualization of mathematical structures is promoted 

(Grenier-Boley, 2014; Harel, 2002). Thus, the student comprehends that the structures can be 

transformed, represented in different ways, and considered as being -- or not being -- 

isomorphic (i.e. mathematically equivalent) to other structures (Hillel, 2000). As I will later 

review, this necessity for more conceptual understanding can be met by learner-centered 

instruction. Thus, student participation in mathematical discussions in a thoughtful and 

profitable manner may promote the comprehension of these representations (Sfard, 2008). 

Students face difficulties grasping the skills and concepts in linear algebra courses (Chang, 

2011). Even students who excel in other courses often have a difficult time with linear 

algebra courses (Dubinsky & Leron, 1994). Harel (2017) explains these difficulties by noting 

that learning linear algebra includes learning about mathematical objects that have many 
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representations and techniques for manipulating them. These objects—including matrices, 

linear equations, vector spaces and linear transformations—are all related and connected. One 

of the main conceptual challenges for students is the necessity of  learning and understanding 

concepts, rather than computational algorithms (Britton & Henderson, 2009). Linear algebra 

is characterized by many abstract mathematical concepts that have no visual representations 

with intricate connections between them (Talbert, 2014). Students tend to think mathematics 

consists of a set of distinct topics that are compartmentalized (Ang, 2001), but in fact they are 

intricately connected. Another challenge for students was that while solving problems, 

students focused on the limited procedures from what they remembered, and this inhibited 

other approaches being attempted (Lithner, 2000). 

2.3 Teaching practices that encourage explorative participation 
There are assorted ways that a teacher can encourage and support explorative participation. 

Explorative participation, which will be more accurately defined later in this chapter, is 

characterized by autonomous student participation whose goal is to author mathematical 

narratives. This section describes teaching practices involved in discussion-based learner-

centered teaching methods, including the learner-centered ones briefly described earlier. This 

includes the tasks given to the students, the teaching practices that support a meaningful 

discussion, and group-based learning. These are discussed in the next sections. 

2.3.1 Mathematical tasks that support explorative participation 

Teaching mathematics includes posing questions – written or spoken, for individual or group 

work, for classwork or homework, and for assessment or formative pedagogical goals. These 

questions, or tasks, may offer more or less opportunities for students to engage with 

mathematical concepts, ideas, and strategies (Sullivan et al., 2015). Many inquiry-based tasks 

are aimed at constructing cognitive conflicts, commognitive conflicts or boundary objects 

(Sfard, 2021) to elicit from the students the need for new mathematical objects, for new rules 

or for amending familiar ones. Once the students are motivated to adopt new narratives, new 

objects and new rules, they still need to actually adopt them and engage with them. 

Therefore, tasks geared towards this are also necessary. 

Various considerations are mentioned in the literature for choosing tasks included in tertiary 

classrooms promoting learner-centered teaching. These considerations include using real 

world problems (Chang, 2011), ensuring conceptual inclusiveness (Stewart & Thomas, 2009) 

and providing the students with the opportunity for engagement in disciplinary practices 

(Zandieh et al., 2017). These do not provide operational characteristics of the tasks 

themselves. 

One of the important considerations of tertiary task design is a high level of cognitive 

demand (Tekkumru-Kisa et al., 2020). A high level of cognitive demand in K-12 schools was 

defined by Stein and her colleagues as “tasks that involve … the use of formulas, algorithms, 

or procedures with connection to concepts, understanding, or meaning” (Stein et al., 1996, p. 

467). Previous studies, in K-12 levels, have shown that tasks that support discussions, as part 

of learner-centered teaching practices, should be aimed at expanding students’ mathematical 

experiences and invite students to deeper engagement (Koichu & Zazkis, 2021). These also 

do not provide operational characteristics of the task itself. 

Other studies briefly describe why they chose the specific tasks used. For example, 

Weingarden et al (2019) used “the hexagon task” in middle schools because it had multiple 

solution paths, was challenging and engaging for the students, and it was previously shown 
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that it produces rich whole-classroom discussions. These do not describe what characteristics 

of the task support learning and how the characteristics mentioned do support discussions. 

Cline and his colleagues (2013) described multiple choice questions they used to provoke 

discussions in a linear algebra classroom as “difficult questions” that required “interpreting 

calculations”. These terms are not well defined, and the 6 specific tasks provoked a 

discussion since the students did not answer homogenously. Yet what were the characteristics 

of these tasks and was the discussion academically fruitful or just voluble?  Hershkowitz and 

colleagues (2022) describe how the task about fractals they used successfully provoked a 

classroom discussion. They suggest that the task supported an inquiry-based discussion since 

the task had a low entry point, that is it was simple to understand, but a high ceiling, that is 

the discussion’s mathematical level was quite high. None of these reviewed studies, however, 

provided, in a well-defined manner, how these tasks provide opportunities for explorative 

participation.  

Smith and Stein (1998) list characteristics of tasks of high levels of cognitive demand, that 

engage students in a manner that increases students’ ability to think and reason. They explain 

that such a task requires complex and non-algorithmic thinking, requires students to explore 

ideas, demands self-monitoring, requires students to access relevant knowledge and analyze 

the task, and requires considerable cognitive effort. These characteristics mainly describe the 

implementation of the task, as seen by the wording that they require certain actions on part of 

the students. The implementation of the task is an integral part of the cognitive demand in 

this list of characteristics. Stein and colleagues (1996) distinguish between tasks that demand 

student engagement at various levels, where the deepest level of engagement includes 

interpretation, flexibility, shepherding of resources, and construction of meaning. That is,  

there are tasks, independent of the implementation, that can support more explorative 

participation and there are tasks, independent of the implementation, that support less 

explorative participation. In this study I searched for characteristics of the tasks themselves, 

as a necessary but not sufficient condition for the tasks being implementable in a manner that 

supports explorative participation. I needed operational criteria to support my design of 

appropriate tasks to use in the workshops.  

2.3.2 Teaching practices that support discussion  

Beginning a discussion with an appropriate task is necessary for a meaningful discussion, yet 

the instructor should also promote conceptual understanding and successful problem solving 

throughout the lesson (Smith & Stein, 1998). These teaching practices should include actively 

supporting meaningful mathematical participation, supporting student struggle in building 

understanding, emphasizing connections between procedures and concepts, and soliciting 

student thinking (Schoenfeld, 2014). Stein and her colleagues identified five specific 

instructional practices for implementing mathematical discussions in elementary and middle 

school classrooms as part of a launch, explore and discuss (LED) lesson. These lessons start 

with a launch of the topic and the task, give the students opportunity to explore the task in 

small groups and then discuss the solution in a whole class discussion. This framework 

encourages construction of ideas, guides student thinking and teaches mathematical discourse 

(Smith & Stein, 2011; Stein et al., 2008). These practices can be done in advance and during 

class discussions and offer teachers more control over the content of the discussion and lessen 

the improvisation inherent in orchestrating discussions based on various student ideas.  

The five practices listed by Stein and her colleagues (2008) are anticipating what students 

will do, monitoring their work in class, selecting students’ strategies that are worth discussing 
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in class, sequencing students’ presentations, and connecting the strategies and ideas. 

Anticipating what students might do, what questions they might ask, and what difficulties 

students might have enables teachers to prepare for class more effectively. This also enables 

teachers to answer students with a well-thought-out answer that was prepared in advance 

(Fernandez & Yoshida, 2004; Schoenfeld, 1998).  Teachers can include the mathematical 

ideas and strategies that students are using by monitoring their work, noting the students’ 

work, and identifying the strategies being used (Lampert, 2001). Monitoring also includes 

asking assessing and advancing questions, to focus students on the specific problem and to 

help students progress towards a solution (Schoenfeld, 1998). Once students’ ideas are 

identified and noted, a teacher can select those that are worth discussing in class. By selecting 

what to discuss, a teacher can direct the discussion towards the intended mathematical 

content and not be surprised by a different topic being discussed (Lampert, 2001).  

Sequencing the presentations in a logical way that builds a mathematically coherent story line 

can help students follow the flow of the ideas being introduced, maximizing the potential to 

increase student learning (Schoenfeld, 1998). Connecting the strategies and ideas discussed in 

class to each other and to the context allows a student to work at different levels, to obtain a 

sense of the larger picture, and to deepen understanding of a topic (Brendefur & Frykholm, 

2000; Lampert, 2001).  

Hiebert and Grouws (2007) stress the importance of connecting strategies and ideas in 

mathematics classrooms. They define teaching as interactions among teachers and students 

around content directed toward facilitating student achievement of learning goals, such that 

the most valued learning goals are student struggle and conceptual understanding. They 

suggest that conceptual understanding grows as mental connections become richer and more 

widespread. They suggest public noting of connections among mathematical facts to foster 

this. Noting connections among mathematical facts can be achieved by discussing the 

mathematical meaning underlying the procedures, by noting how different solution strategies 

are similar or different, and by reminding students of the main point of the lesson and how 

that point fits into the big picture.  

Meaningful mathematical discussions must be instigated, guided and supported through 

appropriate moderation and talk moves (Michaels et al., 2008). Student mathematical activity 

is based on what is considered appropriate mathematical and social behavior in their specific 

classroom (Boaler & Greeno, 2000). There are mathematical and social norms that constitute 

the expected behavior in the classroom. Socio-mathematical norms are social norms that are 

specific to the mathematical aspect of the students’ activity  such as what counts in the 

classroom as mathematically different, mathematically sophisticated, mathematically 

efficient, mathematically elegant and mathematically acceptable (Cobb & Yackel, 1996). For 

example, if a student asks why a statement is correct and the teacher responds, “that’s the 

formula”, then the socio-mathematical norm that “that’s the formula” is an acceptable 

justification is constructed. If, instead, the teacher explains why this formula is true, then the 

socio-mathematical norm of what is an acceptable and sufficient justification will be 

constructed differently. These norms are constructed by the expectations of the teacher, 

student responses, and the interactions between the two (Cobb & Yackel, 1996). Teachers can 

use verbal and facial cues to guide the conversation and to emphasize logical connections and 

reasoning (Michaels et al., 2008), which would support explorative participation.  
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2.3.3 Collaborative group learning 

Many learner-centered methods, including discussion based teaching, include collaborative 

learning sessions in which various learners work together toward a common goal. It has been 

suggested as a classroom practice that encourages active learning and deeper engagement 

with the academic content and is a crucial working skill in the 21st century workplace 

(Barron, 2000).  

In a university setting, collaborative learning, although less researched then in primary and 

secondary education settings, has been shown to promote positive social and academic 

outcomes (Cabrera et al., 2002). The benefits of collaborative learning cited in the literature 

include encouraging discovery, fostering student engagement, promoting student agency, 

advancing communication and collaboration skills, and fostering appreciation for many 

solution paths to a correct answer (Barron, 2000).  

Yet, along with this long list of potential advantages, some researchers have pointed to the 

problems that can exist in student collaboration. These include distracting social interactions 

between members (Barron, 2000) and ineffectual communication (Nilsson & Ryve, 2010; 

Sfard & Kieran, 2001). Studies point to the existence of a connection between effective 

collaborative learning and the affective, social aspects of mathematical learning. The 

coordination between group members working together toward a common goal necessitates 

mutuality in the interaction, a shared task, and joint attention at critical moments (Barron, 

2000). In middle school mathematics, it has been posited that ineffectual communication 

between participants can hinder mathematical progress (Sfard & Kieran, 2001). Motivational 

issues can also influence participation in a collaborative episode (Wood & Kalinec, 2012). 

Thus, collaborative learning sessions, although they have advantages, must be used 

thoughtfully.  

2.4 Commognition 

2.4.1 Choice of commognition as theoretical framework 

The commognitive framework (Sfard, 2008) is a socio-cultural discursive theory, tailored 

specifically for mathematics, which enables the examination of the mathematical content and  

the learning processes involved in mathematical learning. This framework is inspired by 

several socio-cultural theorists, the most notable of them being Lev Vygotsky. Vygotsky 

(1978) explains that social interaction, such as interacting with other learners and with 

experts, fosters intellectual development. Studying mathematical activity from a socio-

cultural perspective highlights the importance of social processes that influence student 

mathematical learning (Lave, 1988).  

The commognitive framework has a well-defined method of describing and analyzing 

learning processes in mathematics classrooms. It has been shown to be productive for 

studying processes of communication in the classroom, particularly from a holistic 

perspective attending to content, social interaction and affect concomitantly in primary and 

secondary schools (Heyd-Metzuyanim, 2015; Heyd-Metzuyanim & Sfard, 2012; Sfard & 

Kieran, 2001). The commognitive framework was also found to be an effective tool for 

studying various aspects of university level mathematics (Nardi et al., 2014). The 

commognitive framework has also been used to study teaching processes (Nachlieli & 

Elbaum-Cohen, 2021; Viirman, 2013). This framework is thus appropriate for studying the 

varied aspects of tertiary mathematical classrooms – teaching, learning, participation and 

tasks – and their interconnections in a well-defined manner. 
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2.4.2 The main tenets of the commognitive framework 

The commognitive framework defines learning as changing one’s discourse, as part of 

becoming a participant in a certain community (Sfard, 2008). Discourse is defined within this 

framework as “set apart by its objects, the kinds of mediators used, and the rules followed by 

participants and thus defining different communities of communicating actors” (Sfard, 2008, 

p. 93).  

Mathematical discourses are hierarchical and recursive, where their objects (e.g. rationale 

numbers in ℚ) are built upon previously established objects (e.g. whole numbers in ℤ) (Sfard, 

2008). Sfard maintains that historically, new mathematical discourses were created either by 

several familiar discourses coalescing into one discourse or by a meta-level discourse 

subsuming an older one. This historical process, according to Lavie and Sfard (2019) may be 

reconstructed in the development of students’ individualized discourse. When learners 

progress from one discourse to a subsuming one, the subsuming discourse includes an 

isomorphic copy of the old ones, as well as new objects and narratives that can only be 

realized in the new discourse. 

Adapting this theory to the domain of linear algebra, one can observe that there are multiple 

discourses in this domain that first have to be adopted, and then coalesced into one single 

subsuming discourse. I exemplify this process on the mathematical notion of systems of 

linear equations (SLE). Historically, there are several different domains that represent SLEs, 

as described by Andrews-Larson (2015). Originally, systems of constraints on everyday 

problems were described verbally. Next, linear systems and their solutions were described by 

Chinese mathematicians in 200 BC and by Gauss (early 19th century) without matrix 

notation. Significant advances in notation, including matrices and determinants, led to SLEs 

being described as mathematical objects, and not merely as a process to a solution. This 

allowed SLEs to be represented by their properties. The modern, formal, axiomatic 

definitions of relations and operations on vectors utilizes vector spaces and linear 

transformations to describe SLEs. In accordance with this historical development of the 

representations of SLEs, we can divide the various narratives that can be authored regarding 

SLEs into five main domains - the solution set (constraints), a list of equations, matrix 

notation, properties of SLEs and vector spaces and transformations.  

Nachlieli and Tabach (2012) theorized the learning of functions in middle school as first 

becoming proficient in multiple subsumed discourses, such as algebraic symbolic 

expressions, graphs and tables, and then becoming proficient in the unified discourse of 

functions. Similarly, I theorize that the learning SLEs, as part of a linear algebra course, 

includes becoming proficient in each of the discourses listed above and producing narratives 

within them, and ideally, then eventually coalescing these separate discourses into one 

unified discourse of SLEs. Following this theorizing of learning SLEs, this theoretical 

framework of learning can be used to describe learning for all topics in linear algebra. 

2.4.3 Objectification 

According to commognition (Sfard, 2008), learning mathematics involves familiarizing 

oneself with discursive objects that only exist in socially constructed discourse. The words or 

symbols that are used in the discourse are termed signifiers. Realizations of a signifier are 

expressions that are all interchangeable, which are all treated in experts' mathematical 

discourse as denoting "the same" object (Sfard, 2008). For example, the object “two”, which 

is the number you reach when counting two apples and is a product of counting, can also be 
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signified by the numeral 2. This object can also be realized using additional signifiers such as 

by 4/2, 1+1, and √ 4. Another example is the signifier "vector space” which can be realized 

by an algebraic expression describing its general element (e.g. {(x,y,-x-y) | x,y ∈ F}), by a 

linear span of one of its many bases  ( e.g. Sp{(1,-1,0),(0,1,-1)} ) or by the solution of a 

homogenous system of linear equations (e.g. x+y+z=0). Mathematical discourse consists of 

narratives about realizations of signifiers and manipulation of those signifiers. 

Objectification happens when students come to communicate about mathematical symbols 

(e.g. √1
8

 ) as representing objects in the world (e.g. “the set of complex numbers which divide 

the unit circle into 8 equal parts”).  The objectification process includes substituting 

descriptions of actions and processes with descriptions of the products of these processes as if 

they occurred without the participation of human beings (Sfard, 2008). Saying “there are four 

cookies” is a reified restatement of “when I recite the counting chant and point to each 

cookie, I end up at four”. We state that a triangle is encircled instead of saying that we drew a 

circle around a triangle. Instead of discussing “the values that a person plugs into a 

polynomial to achieve 0”, we can discuss the “roots of a polynomial”. Objectification 

eliminates both the process that created the object and the author of the process, allowing 

these objects to be discussed as if they exist regardless of human action. 

One of the main challenges in learning mathematics stems from the need to form narratives 

about mathematical objects, which one has not yet objectified. When a student has not 

objectified the objects involved in the discourse, participation in that discourse can be done at 

first only by imitation of more knowledgeable experts (Sfard, 2008). Saming the different 

realizations of an object (e.g. 1 + i and √2cis(π/4)) is an essential step towards such 

objectification. This occurs when students come to see two or more realizations of a 

mathematical signifier as exchangeable and equivalent (Sfard, 2008). This is based on the 

fact that endorsed narratives using one realization (the parabola cannot meet the x axis in 

more than two places) is endorsable when translated to a different realization (ax2 +bx +c has 

at most 2 roots).  

Endorsable narratives that can be samed can be from within a single discourse or from two 

disparate discourses (Sfard, 2008). Similarly, the saming of realizations of an object can 

occur between realizations from within the same discourse or from within different 

discourses. Weingarden and colleagues (2019) describe saming between two algebraic 

expressions 4n+2 and 6n-2(n-1) of the perimeter of n connected hexagons. In this case, the 

signifiers, keywords and metarules are the same. These narratives are from within a single 

discourse and links between them are denoted as vertical by Weingarden and Heyd-

Metzuyanim (2019). They also describe saming between a table of values and the above 

algebraic expressions to describe the perimeter of the aforementioned train of hexagons. The 

table of values is from within a separate discourse, as it uses different signifiers, different 

keywords and different metarules. This saming is denoted as horizontal by Weingarden and 

Heyd-Metzuyanim.  

Saming realizations of objects with vertical links, within a discourse, extends the discourse. 

Saming realizations with horizontal links, in between discourses, authors narrative from the 

subsuming discourse, which is a coalesced discourse of all the subsumed discourses. This 

coalesced discourse includes narratives that are endorsable in all the subdiscourses and new 

narratives (Sfard, 2008). For example, the discourse of functions subsumes the discourse of 

algebraic formulas, of curves and of physical processes and includes narratives that can be 
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endorsed in all of these discourses and narratives that include pieces of narratives from 

multiple discourses (Sfard, 2008, p. 174). This can also be exemplified in linear algebra in the 

complex numbers discourse. The narrative z = 1+i is a narrative from within the discourse of 

algebraic notation of complex numbers, which is a subdiscourse of the discourse of complex 

numbers. The narrative z = √2cis(π/4) is from within the discourse of polar representation of 

complex numbers, another subdiscourse of complex numbers. Authoring the narrative that 

these are the same, i.e. 1 + i = √2cis(π/4), is a narrative from within the coalesced discourse 

of complex numbers, which includes the subdiscourses of algebraic representation of 

complex numbers and polar representation of complex numbers. It cannot be authored in any 

of those subdiscourses, as it is constructed of pieces of narrative that can only be authored in 

different subdiscourses. Thus, saming realizations of an object consists of authoring 

narratives in a new, coalesced discourse (Lavie & Sfard, 2019). 

2.4.4 Mathematical routines and narratives 

Mathematical learning, according to the commognitive theory, is the process whereby 

learners develop and refine their participation in the mathematical discourse by authoring 

narratives in familiar discourses and then, based on that, authoring narratives in new 

discourses (Sfard, 2008). These narratives include descriptions of mathematical objects and 

their properties and descriptions of manipulations of these objects (Sfard & Lavie, 2005). 

Routines can result in narratives about properties of objects, such as finding the equation of a 

linear function from a table of values results in the narrative “the equation is y=ax+b” (Sfard, 

2008) or finding a solution to an equation and stating, “the solution of x2=9 is ± 3”. Lavie, 

Steiner and Sfard (2019) define mathematical routines as a task and procedure pair used by a 

student to achieve a certain goal. These authors differentiate between the task situation, 

which is the way that a task-poser (such as the teacher) defines the task and the task, which is 

the way the task performer (learner) interprets the task. To exemplify this, examine the 

question posed by a teacher in middle school whether two given triangles are “the same” 

(Ben-Dor & Heyd-Metzuyaninm, 2021). The task situation was to determine if the triangles 

are congruent, and a student interpreted the task to be if the triangles are the same size. The 

procedure used by the student was to estimate the length of the sides of the triangle. Thus, the 

student’s routine was to determine if the triangles are the same size by measuring them. 

Whereas the teacher’s intended routine was to use geometric theorems to prove congruence. 

The students’ learning processes can be examined through their routines. 

An important distinction made in commognition around routines and the rules governing 

them, is between object-level rules and meta-level rules (Ben-Zvi & Sfard, 2007). Object-

level rules deal with mathematical objects and how to manipulate them, such as how using 

scalars to multiply vectors would cancel them out. Meta-level rules, or metarules, define the 

patterns in the activity of the discourse and are custom-sanctioned, rather than externally 

imposed (Sfard, 2008). These are the rules about rules that constrain how to establish object-

level narratives. Usually, metarules are variable, tacit, perceived as normative, constraining 

and contingent (Sfard, 2008). They can be rules pertaining to what type of answer is 

expected. For example, for a question starting with “how many”, it is perceived as normative 

to answer with a quantifying phrase. They can be rules pertaining to what is considered a 

sufficient justification. For example, in a university classroom it is tacit that x+x = 2x, which 

would not be the case in middle school. Metarules become object-level rules once the 

discourse is adopted (Sfard, 2008). 



15 
 

Recent commognitive works have differentiated between two types of meta-level rules. 

Nachlieli and Elbaum-Cohen (2019) name them executive metarules and object related 

metarules. Sfard defined metarules as “patterns in the activity of the discursants trying to 

produce and substantiate object-level narratives” (Sfard, 2008, p. 201). This definition aligns 

with metarules for what is considered an acceptable proof and was labelled by Nachlieli and 

Elbaum-Cohen as an executive metarule. These type of metarules change and evolve. For 

example, the rules of what is considered an acceptable proof evolve from visual arguments in 

elementary school to formal, deductive proofs in university (Ben-Dor & Heyd-Metzuyaninm, 

2021). Metarules are also defined by Sfard as “rules that define patterns in the activity of the 

discursants” (Sfard, 2008, p. 299), not necessarily about how to substantiate narratives. This 

definition pertains to rules specific to the object being studied. For example, multiplying by a 

whole, positive number makes the product bigger, which is not the case when multiplying by 

a fraction (Nachlieli & Elbaum-Cohen, 2019). Another example of a rule specific to an object  

is commutativity of multiplication. It is an object related metarule for authoring narratives 

about scalars. In contrast, this metarule is non-canonical in matrix multiplication. These types 

of metarules were labelled by Nachlieli and Elbaum-Cohen as object related metarules. 

2.4.5 Object-level learning and meta-level learning 

In object level learning, students gradually produce (or endorse) an increasing number of 

narratives about familiar mathematical objects (Sfard, 2008). Most learning occurs through 

object-level learning, however when new mathematical objects and new rules of discourse 

are introduced, the learning is meta-level and requires a change in meta level rules. Barnett 

(2022), using the commognitive framework, differentiated between types of learning by 

describing endogenous growth and exogenous growth. Endorsing new object level narratives 

within a discourse, when there is no change in metarules, is endogenous development. 

Exogenous growth involves the adoption, or significant modification, of metarules.  

Within exogeneous development there is a distinction between horizontal and vertical 

development (Barnett, 2022), which aligns with Nachlieli and Elbaum-Cohen’s (2019) 

distinction between types of metarules. Exogeneous horizontal development occurs when a 

number of previously separate discourses subsume into a single new discourse. Barnett 

exemplifies this with describing how modern graph theory subsumed electrical circuit design, 

recreational puzzles and map colorings. Exogeneous vertical development combines an 

existing discourse with its meta-discourse, that is with new metarules about proving. Barnett 

(2022) exemplifies this by describing Dedekind’s creation of new ways of proving (by using 

new mathematical objects of ideals instead of a number). Meta level learning happens both 

vertically and horizontally. 

Learning linear algebra, like all learning, is becoming fluent in the discourse of linear algebra 

(Sfard, 2008). This includes becoming fluent in all the subdiscourses of this topic (such as 

matrices, systems of linear equations, vector spaces, etc.) and saming the realizations from 

the various subdiscourses. Learning linear algebra involves object-level learning by authoring 

narratives within a discourse. For example, producing narratives about different matrices by 

using routines tailored for matrix manipulation (e.g. reducing a matrix to Echelon form). 

Learning linear algebra also involves meta-level learning, both vertical and horizontal. The 

vertical metalevel learning includes adopting more general mathematical metarules of proof 

and justification, rules labelled executive metarules (Nachlieli & Elbaum-Cohen, 2019). The 

horizontal meta-level learning includes adopting new coalesced discourses and object related 

metarules.  
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Previous studies (not within the commognitive framework) have stressed the importance of 

making students of linear algebra aware of the equivalence of the various representations 

being studied (e.g. Selinski & Rasmussen, 2014). This shows that horizontal meta-level 

learning, i.e. adopting new, coalesced discourses, is probably ubiquitous in linear algebra 

classrooms. An example of such learning in linear algebra would be familiarizing oneself 

with the routines of manipulating vectors as elements of vector spaces and saming these with 

the routines in the discourse of n-tuples. The meta-level learning required includes adopting 

the discourse of vector spaces and making the meta-level shift to the new meta-level rules in 

the new, coalesced discourse. In commenting on tertiary mathematics in general, Thoma and 

Nardi (2018) point out that first year mathematics courses include many meta-level shifts, 

due to the numerous new mathematical objects introduced, the rules governing their 

manipulation, and the metarules of formal proof that are unfamiliar to graduates of secondary 

school. This can be applied to linear algebra as well, which includes many new objects, new 

procedures and formal proof construction (Malek & Movshovitz-Hadar, 2011). Learning in 

linear algebra involves adopting executive metarules in vertical exogeneous development, 

adopting object related metarules in horizontal exogenous development and adopting new 

object level narratives in endogenous development. 

2.4.6 Ritual and Explorative Participation 

As reviewed above, learning mathematics, according to commognition, includes meta-level 

shifts to new discourses. The shift involved in meta-level learning can often be done at first 

only ritually, that is, by imitation of more knowledgeable experts (e.g. Sfard, 2007a). This 

ritual entrance into a discourse stems from the fact that the learner of a new discourse (e.g. ℂ) 

is faced with a seemingly impossible task of communicating about discursive objects 

(“complex numbers”) that do not yet exist in his discourse. Ritual participation is 

characterized by manipulation of mathematical symbols focused on the procedure rather than 

on the final narrative about the mathematical object (Sfard & Lavie, 2005). The counterpart 

of ritual participation is explorative participation, which is characterized by taking part 

autonomously and creatively in the discourse. The goal of ritual participation is usually to 

please others, while the goal of explorative participation is to produce mathematical 

narratives (Heyd-Metzuyanim & Graven, 2015). Another hallmark of explorative 

participation is objectification of mathematical objects in the discourse, that is mathematical 

objects exist independent of processes and new narratives pertaining to these objects are 

authored (Sfard & Lavie, 2005).  

Student participation gradually progresses from ritual participation to explorative 

participation (Lavie et al., 2019; Sfard & Lavie, 2005). A student who participates ritually in 

the conversation can implement memorized procedures but is not able to construct new 

narratives about the object nor to flexibly choose alternative procedures for substantiating a 

narrative about the object (Sfard, 2008). The differentiation between ritual and explorative 

behavior is not discrete, rather student mathematical actions can be characterized on a 

continuous spectrum between the two (Lavie et al., 2019; Viirman & Nardi, 2019). 

Continuous ritual participation, that does not evolve into explorative participation, generally 

produces mathematical failure (Heyd-Metzuyanim, 2015). 

A necessary, but not sufficient, condition for explorative mathematical participation is 

appropriate opportunities to learn (Kilpatrick, Swafford, & Findell, 2001; Nachlieli & 

Tabach, 2019). Opportunities to learn (OTLs) are circumstances that allow the students to 
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engage in and spend time on academic tasks. The task that is presented needs to be suitable, 

as different tasks will create different opportunities to learn.  

2.4.7 Explorative Instruction 

Explorative instruction is instruction that affords students opportunities for explorative 

participation (Weingarden et al., 2019). Such teaching has been described in mathematics 

classrooms in elementary schools (Baor, 2020), middle schools (Nachlieli & Tabach, 2019; 

Weingarden et al., 2017) and secondary schools (Nachlieli & Elbaum-Cohen, 2021). 

Explorative teaching was described as, “Teachers’ actions that provide students with tasks 

that could not be successfully solved by performing a ritual. Rather, a successful completion 

of the task can only be achieved by participating exploratively” (Nachlieli & Tabach, 2019, p. 

257). In contrast, teaching that affords only opportunities for ritual participation is 

characterized by instructional routines that focus on procedures and afford little opportunities 

for students to author their own narratives (Weingarden et al., 2019).  

Weingarden and colleagues (2019) examined classrooms discussions and assessed them for 

explorative participation of the students. They mapped the realizations mentioned during a 

discussion; which links between realizations were authored during the discussion; and who 

authored these by using an RTA (realization assessment tool). An RTA uses the notion of an 

object being a “signifier together with its realization tree” (Sfard, 2008). It is a visual 

representation of realizations of a mathematical object and the connections between them. 

Once the mathematical object in the discussion is determined, an RTA can be constructed. 

This includes listing the object’s realizations, determining the possible relations between 

them, grouping together realizations of similar types and determining which realizations and 

links were authored in the discussion and by whom.  

Weingarden and colleagues (2019) describe a mapping of a discussion in a 7th grade class 

asked to describe the perimeter of a train of n hexagons. After the students worked in small 

groups for 35 minutes, they presented their solutions to the class. One student explained his 

group’s solution of 4x+2. The student used a visual realization and pointed to a picture on the 

board depicting the train of hexagons. The student also used a verbal realization and 

described the perimeter of the train. Finally, the student used an algebraic realization and 

authored the narrative 4n+2. This student also explained the connections between these 

realizations and thus authored links between them. The RTA drawn for the discussion is in 

Figure 2-1, below. 
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Figure 2-1 7th grade discussion mapped by RTA (Weingarden et al., 2019) 

The RTA mapping affords an operational description of explorative instruction. That is, 

explorative instruction gives students opportunities and agency to construct narratives about 

mathematical objects, presenting different realizations for mathematical objects, and 

authoring links between these realizations. Similarly, the potential of a task for explorative 

participation can be operationally defined as the existence of the possibility of presenting 

different realizations for mathematical objects and the possibility for authoring links between 

these realizations. 

Previously I described two types of saming realizations – within a discourse and in between 

two discourses. Authoring links in between realizations within the same discourse is object 

level learning, as this is adopting a new narrative within a discourse. Authoring links between 

realizations that are in different discourses is authoring a narrative from the new coalesced 

discourse, and is horizontal exogeneous development, that is meta-level learning. Learning 

mathemtics encompasses both object-level learning and meta-level learning, but explorative 

instruction has not been examined in detail with relation to object-level or meta-level 

learning. There are some suggestions that meta-level learning necessitates ritual participation,  

as a student cannot participate exploratively in a new discourse (Sfard, 2008). This needs 

more study. 

2.4.8  Commognitive theorizing of group learning   

As explained above, explorative instruction methods, like other learner-centered methods, 

often include sessions of small group learning, or peer learning. Several commognitive 

studies have tended to the issue of group learning, albeit often pointing to their weaknesses, 

rather than to their strengths. Sfard and Kieran (2001) showcased a pair of 7th grade students 

whose differing mathematical narratives did not lead to a meaningful mathematical 

conversation. Ben-Zvi and Sfard (2007) described another pair of 7th grade students whose 

mathematical learning did not advance in the group, despite one of the members of the group 
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being an expert in the discourse the group was attempting to adopt. A similar story is 

recounted by Sfard and Chan (2020). These studies all pointed to the communication between 

the members of the group as ineffective and hindering the mathematical activity in the group.  

Learning in a group setting includes the communication between group members about 

mathematical objects and the communication about the members of the group (Heyd-

Metzuyanim & Sfard, 2012). In mathematics classes students are involved in mathematical 

discourse, these include attempting to describe objects’ properties, finding solutions to 

equations, or achieving other mathematical goals. This is mathematical activity, or 

mathematizing. Yet there is always a concomitant activity going on, which relates to student 

identity, affective responses and how students position themselves in the discourse (Heyd-

Metzuyanim & Sfard, 2012).  These two activities are intertwined and ineffective 

communication can hinder the mathematical communication (Ben-Zvi & Sfard, 2007). Ben-

Zvi and Sfard described a group learning session where the students’ mathematical learning 

did not advance, despite one of the members of the group being an expert in the discourse the 

group was attempting to adopt, due to communication issues between the pair of students. 

Communication will be considered effective or ineffective based on if the responses of a pair 

of discursants are consonant with the pair’s expectations (Sfard & Kieran, 2001).  

The mathematical communication in group learning occurs in multiple channels of 

communication (Sfard & Kieran, 2001). The first channel is the intra-personal channel, which 

focuses on a person’s own reasoning and ideas. This occurs when a person communicates 

with himself about his ideas, although it could be out loud. The second channel is the 

interpersonal channel, where the participants in the discussion are focused on their partner’s 

reasoning and ideas. Asking for corroboration for a claim, giving corroboration for a claim, 

questioning another’s claim and answering a question asked by another are all in the 

interpersonal channel. The interpersonal channel includes reactive utterances, where the 

utterance is a reaction to another’s utterance, and proactive utterances, where the utterance is 

aimed at getting a reaction from the other participant in the discourse.  

Learning is a change in a student’s discourse and can occur through communication in the 

various channels of communication (Chan & Sfard, 2020). A learner’s proficiency in any 

discourse can possibly advance whenever a student is exposed to narratives from within that 

discourse. This exposure can occur in the intra-personal channel of communication, where a 

student authors narratives from within a discourse to himself, or in the interpersonal channel 

of communication, when another student authors narratives from within the discourse.  

2.5 Summary of theoretical background 
Through the review of the literature, I showed that learner-centered, discussion-rich, active 

teaching methods supported student engagement and deep learning in all levels of 

mathematical education, and particularly in university level mathematics education.  

Many implementations of learner-centered teaching, and specifically, discussion-based 

teaching and group learning activities, in tertiary mathematics have supported student 

learning, student interest, student confidence, student outcomes and student engagement. 

Explorative participation in mathematical discussions can be supported by appropriate tasks 

and teacher actions, including moderation that encourages such participation. The studies 

describing the implementations of learner-centered teaching in tertiary mathematics 

classroom focus on the teaching methods and the outcomes of these implementations, and 

less on the student learning processes involved.  
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3 Research goals and research questions 
There were two main goals of this study. One goal was to adapt instructional practices, 

shown to promote discourse-rich explorative participation to a university linear algebra 

course to support and encourage student participation and learning. The second goal was to 

explore an implementation of the above adaptation to better understand the processes of 

learning in an undergraduate classroom in terms of the opportunities for learning that were 

picked up in both whole class and small group discussions. 

Adapting explorative instructional practices included designing tasks and lesson plans aimed 

at promoting discourse-rich explorative participation in tertiary mathematics courses. These 

were implemented in discussion-based workshops in linear algebra courses in a science and 

engineering university.  

The questions asked were: 

1) What was the potential of the tasks designed for the workshops to support explorative 

participation and encourage student learning? That is: 

(a) What are the mathematical objects that can be exposed through the tasks, their 

different realizations, and the opportunities for explorative participation that can be 

afforded?  

(b) How do the tasks afford opportunities for adopting new meta-rules involved in the 

discourse of linear algebra? 

2) To what extent were opportunities for explorative participation taken up in the whole 

classroom discussion and in what ways? 

 3) What were the learning processes in small groups of the participating students? 

Specifically: 

a) What were the students’ initial mathematical routines authored to solve the 

proffered task? Did they change as a result of the interaction, and if so, how?  

b) What were the patterns of communication during the interactions? How did the 

patterns of communication afford or constrain the change in students’ routine during 

the interaction?    

c) What objects and subdiscourses were involved in the interaction? How did these 

afford or constrain the change in students’ routine during the interaction?    

  



21 
 

4 Methodology 
This chapter describes the methodology used in this study. The research setting is described 

in Section 4.1. Section 4.2 describes the data source, including the framework and content of 

the workshops. The analysis of these workshops is depicted in Section 4.3. Section 4.4 

comments about my dual role as a researcher and an instructor in the workshops being 

studied. An ethical statement is brought in Section 4.5 and the trustworthiness of the analysis 

is discussed in Section 4.6. 

4.1 Research Setting 
This study was conducted at a science and engineering university, where all the students have 

successfully passed advanced level high-school mathematics courses required for entrance. 

Students take a linear algebra course, a requirement for most science and engineering 

students, during their first semester, as it is a prerequisite for many other courses. The data is 

from three courses – Algebra 1m Winter 2019, Algebra 1E Spring 2019, and Algebra A 

Winter 2020 course. Algebra 1m and Algebra A are taught in Hebrew and Algebra 1E is 

taught in English as part of an International Engineering program. More details about the 

courses and the students are discussed in Section 4.1.2. 

For this study, workshops were offered to the students in linear algebra courses. Linear 

algebra is traditionally taught in the university using frontal lecturing methods. The students 

have 4-5 weekly hours of lectures and 2-3 hours weekly of tutorial sessions. The lecturer 

defines the mathematical notions, shows characteristics, proves theorems, and gives 

examples. In the tutorial sessions, the teaching assistant (TA) shows worked examples of 

problems utilizing the theoretical knowledge discussed in the lectures. The workshops 

assumed that the students had participated in lectures and tutorials, and thus they were 

somewhat familiar with all the definitions and theorems presented in those. Homework 

assignments in the courses consisted of a computerized parameter-based homework system 

for technical problems and handwritten human graded proof questions. The workshops took 

into account that some of the students had worked on the homework problems and some of 

the students had not. The workshops were offered in addition to the regular lectures and 

tutorials and held in parallel to the lectures and tutorials.  

4.1.1 Linear algebra workshops 

The sessions were one academic hour and participation in the workshops was voluntary. In 

the Spring 2019 semester, where there were 30 students registered for the course, 5 extra 

points were awarded on the homework grade (which is 10% of the final course grade) to 

students participating in at least 80% of the workshops. This was done to encourage 

participation, as with such a small number of students registered in the course, there was a 

concern that not enough students would choose to come to the workshops. In the other two 

semesters, there were over 500 students registered in each course, so no extra encouragement 

was deemed necessary to ensure sufficient student attendance for the study.  

The number of students participating in each workshop varied based on how many students 

were aware that a session was to be held that day, what topic the session was about, prior 

commitments of the students and other factors. Thus, the number of students in the 
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workshops varied greatly, from 7 students to 60 students. These are displayed in Table 4.1 

below. Some of the students were in all or most of the sessions and some students were only 

in a single session.  

The lesson structure of the workshops was an adaptation of the launch, explore and discuss 

(LED) structure and Smith and Stein’s (2011) suggested practices for orchestrating 

productive mathematics discussions described in the theoretical background. At the 

beginning of each workshop, there was a short (around 5 minutes long) introduction. This 

included a summary of definitions and theorems presented in the lectures and tutorials. These 

were written on the board and were available to the students throughout the workshop. Next, 

the students were given a worksheet with tasks to work on together in small groups of 2 or 3 

students. I was the instructor and I walked around answering questions and asking advancing 

questions where it was needed. This part took between 15-20 minutes. Finally, the students 

presented their solutions to the class and a whole-class discussion was moderated by the 

instructor discussing the proffered solutions, connecting the various solutions suggested by 

the students, and discussing other related topics brought up by the students’ questions and 

examples. This discussion was usually 15-20 minutes long. Detailed lesson plans were 

written for the workshops. These lesson plans included lesson goals, mathematical tasks, 

multiple possible solutions, possible student difficulties, advancing questions for each 

difficulty and questions for further discussion. The lesson plans can be found in Appendix A, 

Section 10.1. 

As summarized in Table 4.1, 13 workshops were held over 3 semesters about 6 topics from 

the course syllabus. The first two workshops, during the Winter 2019 semester, were used to 

test the feasibility of this type of workshop and to support the initial design phase of the 

project. These two workshops were not recorded but they were described in a research 

journal. The initial workshops showed that students were willing to attend more classes, in 

addition to the official lectures and tutorial sessions, and raised the expectation that students 

in future workshops would participate in the type of discussions planned and would be 

interested in learning actively. In addition, these two workshops allowed the moderator to 

learn and practice the skills needed for this type of teaching and to receive feedback on the 

moderating from teacher educators who had experience with explorative instruction in 

secondary schools. The conclusions from these two workshops informed the planning and 

implementation of the recorded workshops. 

Overall, 13 workshops were held between November 2018 and February 2020. Table 4.1 

summarizes all the workshops, their topics, the language spoken in the workshop, the number 

of students in the workshop and the timing in which they were held (in terms of week out of a 

13-week semester).  

4.1.2 Participants in the workshops 

There are different levels of linear algebra courses given for the different faculties.  In the 

Winter 2019 semester the students were from the Algebra 1m course, which is considered the 

second level (out of three) of linear algebra taught at this institute. This course serves students 

of various engineering faculties, including electrical engineering, mechanical engineering, 

bio-medical engineering, and physics. The students participating in the workshops included a 
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male and female, Jewish and Arab students, similar to the general student body in the 

institute. All the students in the workshops were first semester students.  

In the Spring 2019 semester the students were from an International School of Engineering 

Mechanical Engineering program. The course was Algebra 1E, which is parallel to Algebra 

1m. The students were from North America, South America, Europe and Asia. Most of the 

students’ native language was not English. The students had taken introductory math courses 

in the first semester and were in their second semester of the program. 

The students in the workshops in the Winter 2020 semester were from the Algebra A course. 

This course is for students learning towards a degree in mathematics, computer science and 

data science. It is considered the highest level linear algebra course at the Institute. The 

syllabus includes more proofs, more abstract objects (for example, finite fields) and more 

hours of tutorial a week than Algebra 1m. This course is geared towards first semester 

students, yet it includes numerous students repeating the course. Thus, there were likely some 

students in the workshops for which this was not their first semester. 

Course Workshop 

No. 

Label Week of 

Semester 

(13 total) 

Topic of 

Workshop 

Number 

of 

Students  

Language 

Algebra 

1m 

Winter 

2019 

1 P1 4 Matrices 25 Hebrew 

2 P2 6 Systems of Linear 

Equations 

10 Hebrew 

Algebra 

1E 

Spring 

2019 

3 S1 2 Complex Numbers 14 English 

4 S2 5 Systems of Linear 

Equations 

9 English 

5 S3 8 Linear Dependence 12 English 

6 S4 11 Linear 

Transformations 

12 English 

7 S5 15 Diagonalizable 

Matrices 

15 English 

Algebra 

A 

Winter 

2020     

8 W1 2 Complex numbers 60 Hebrew 

9 W2 4 Matrices 15 Hebrew 

10 W3 6 Systems of Linear 

Equations 

10 Hebrew 

11 W4 8 Linear Dependence 24 Hebrew 
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12 W5 11 Linear 

Transformations 

7 Hebrew 

13 W6 13 Diagonalizable 

Matrices 

25 Hebrew 

Table 4-1 The Workshops, timing, number of students, topic and language 

4.1.3 The tasks that formed the basis for the workshops 

The basis for the workshops were the tasks with which the students engaged, and which 

formed the basis for the whole class discussion. As reviewed in the theoretical background, 

selecting appropriate tasks for supporting explorative participation in learning processes is a 

complex project with multiple facets. First, tasks should support student learning by being 

challenging so that the students engage with the tasks, but not frustrating so that the students 

do not disengage (Tekkumru-Kisa et al., 2020). That is, the level and content of the task must 

be suitable. Another critical feature of such tasks is that they should support explorative 

participation (Cooper & Lavie, 2021), that is they should afford students opportunities for 

saming and objectification of the mathematical objects embedded in them. In addition, 

solving tasks should involve opportunities both for object level-learning and for meta-level 

learning (Sfard, 2008). Based on these considerations, the tasks were designed and 

developed. 

The tasks evolved considerably over the two years of the project for several reasons. Some of 

the tasks failed to instigate discussions. Additionally, the wording of some of the questions, 

intended to encourage discussion, confused some of the students. In some of the workshops, 

the initial questions sparked discussions about a different topic than intended. Thus, 

modifications and tweaking were necessary and were carefully documented and carried out 

using a modified design based research cycle (Prediger & Gravemeijer, 2019), as will now be 

described. 

I employed a design research approach which utilizes cycles of design and practice. Each 

cycle includes holding a session, reflective analysis, and improving the design. The initial 

task design was based on personal experience, on input from colleagues and other expert 

teachers and from the relevant literature (Denzin & Lincoln, 2011). The reflective analysis 

examined two main facets of the tasks - student participation in the discussions and the 

mathematical content. The analysis led to modifications of the tasks. For example, the initial 

wording of the introduction to the task about linear dependence used in Workshop S3 was:  

Are the following statements True or False? If a statement is true, prove it. If a 

statement is false, give a numerical counter example.  

One of the statements that needed to be proved was: 

If {u1, u2, u3}⊂ V is linearly independent, u4 ∈ V, then {u1, u2, u3, u4} is linearly 

independent. 



25 
 

In the first implementation of this task the students gave simple counter examples, such as a 

linear dependent set including the zero vector. These examples did not support a meaningful 

discussion about linear dependent sets, and to spark such a discussion more “interesting” 

examples were introduced into the discussion by the instructor. Answering the above 

questions focused the need to compel the students to author these examples and the wording 

of the question was changed for Workshop W4 to:  

True or False? If a statement is true, prove it. If a statement is always false, give a 

numerical counter example. If a statement is sometimes true, give an example when it 

holds and when it doesn’t hold.    

In Workshop W4, using this modified wording, the students authored more varied examples 

including more types of sets that supported the discussion, and there was no need for the 

instructor to introduce more examples. The wording of some of the other tasks were also 

changed to clarify the task for the students. 

The modifications also included adding more questions to some of the tasks. In one of the 

workshops, some of the students participating had already worked on similar homework 

problems and found solutions immediately, whereas some of the students had not yet 

participated in tutorials on the topic and found the tasks frustrating since they were not 

familiar with the procedures and theorems of the topic. This led to some of the tasks being 

modified to include more questions on different levels to accommodate the wide range of 

students who participated in the workshops.  

 The 7 modified tasks are displayed, analyzed and discussed in detail in the findings section 

in Chapter 5. 

4.2 Data 

This study explored the content, the social interactions, and the communication in the 

workshops. The data collected included the tasks and the recordings of the workshops. 

4.2.1 Tasks  

The design and development of the tasks were described in a previous section. The original 

tasks, the modified tasks and the considerations about the tasks were used as the data for the 

first research question of this study.  

4.2.2 Recordings 

The first two workshops of the Spring 2019 semester, Workshops S1 and S3, were held in the 

institute’s Center for Promotion of Learning and Teaching recording studio. This center is 

equipped with high-quality cameras, audio recording capability and appropriate white board 

for clear images of the board. It was designed to produce recorded lectures and tutorials. The 

quality of the recordings is very high, however only the board was recorded, and the small 

group interactions were not. Moreover, seating in groups was almost impossible in that room 

and the whole room was designed purely for frontal lectures. Therefore, I chose to trade 

recording quality (of whole class discussions) with appropriate physical settings for 
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explorative instruction and the 9 other workshops were held in classrooms that allowed 

seating in groups, or at least in pairs. In these classrooms there was a stage for the instructor 

with a large whiteboard, the desks were bolted in place and the chairs were connected to the 

desks. To record discussions, four cameras on tripods were used. One camera recorded the 

activity at the board and 3 additional cameras were randomly placed in the classroom to 

record small group interactions. The whole class discussion was recorded from 11 workshops 

and 20 small group interactions were recorded.  

4.2.3 Choice of groups to analyze from the small group discussions 

The learning processes of students in small groups were examined by using discourse 

analysis. This is a highly work-intensive method and therefore, a principled data reduction 

process was needed, to choose the small group discussions that would be most illuminating 

for answering the research questions. This data reduction process will be described below. 

As a first step, all the recordings were viewed and briefly summarized as to the mathematical 

content and the group dynamics. The twenty group recordings were labelled based on the 

workshop (S = Spring, W = Winter; Sn or Wn, n = number of workshop; Sn-i, i = number of 

group). For example, W3-2 signifies the second group recorded in the third workshop of the 

winter semester. A table summarizing this is in Appendix B, Section 10.2. 

Next, I chose on which groups to focus more deeply. I wanted to examine the mathematical 

content of the small group discussions. Therefore, the groups that did not include enough 

visible mathematical activity were not further examined. Some of the mathematical activity 

was not accessible due to various factors such as unclear speech or students speaking in a 

language I do not understand. In some of the groups the students did not interact out loud 

very much, and mostly each student solved the task individually. In some of the groups the 

students did not justify their claims, either stating, “It’s obvious” or just not explaining their 

ideas out loud. In all, in 7 groups there was minimal audible mathematical discussions, thus 

they were not further examined. 

Even after removing the above data, there were many groups and interactions left to examine. 

In order to examine the processes involved in collaborative learning, I searched for groups 

with contrasting interactions, as contrasting cases allows for comparison and contrast of the 

cases and thus gives a deeper look at each case (Meyer, 2001). One group whose interaction 

included equal participation was chosen and one group with unequal participation was 

chosen. The table below displays how these groups were chosen. 
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Table 4-2 - Group choice 

4.2.3.1 Choosing a group with a seemingly successful collaborative learning 

Group W4-2 was chosen as an illustrative example of a collaborative learning process. I 

searched for a group with equal participation to examine the processes involved in 

collaborative learning. There were 7 episodes that seemingly had interesting mathematical 

discussions to analyze, and the participation was mostly egalitarian, therefore the learning 

seemingly was collaborative. These 7 episodes were transcribed and examined more fully. 

The group W4-2 (groups labelled as described above - workshop W4, group 2) was a mixed 

gender pair given the pseudonyms Hadar and Yaniv. They explicitly disagreed at the 

beginning of their interaction and their discussion included initial non-canonical statements 

and seemingly a collaboratively constructed canonical narrative. They both authored 

narratives, they both questioned the other’s narratives and they both seemingly advanced in 

some aspects of solving the task. This seemingly productive, joint interaction could shed light 

on the processes involved in a successful, collaborative learning episode. Thus, the dyadic 

interaction between Hadar and Yaniv was analyzed in depth to examine the processes 

involved in collaborative learning within the workshops. 

4.2.3.2 Choosing a group with a glaringly unequal communication 

Group S3-2 was chosen as an illustrative example of the learning processes involved in a pair 

with unequal communicational patterns. This is common in peer-learning (Barron, 2003), and 

there were 6 such groups, from among the 20 recorded. In these groups one of the pair acted 

as an expert and as a leader, and the other partner acted as a follower. The “expert” partners 

told the other student explicitly what to do, and the other member of the pair acquiesced to 

this and treated the first student as an expert. The expert member of the pair was considered 

the arbitrator of mathematical correctness. The follower either asked, “Right?” about a 

statement or waited for the expert’s permission to continue. In some of these pairs, the expert 

also determined non-mathematical behavior. A follower asked, “Should we write it out?” and 

20 Groups recorded

13 Groups

Unequal Identities

6 Groups

Group S3-2: 

Alice & Ben

Equal participation

7 Groups

Group W4-2:

Hadar & Yaniv

Minimal Mathematical 
Content

7 Groups
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“Do we need to give an example?” asking the expert how to continue. There are also groups 

where someone attempted to act like a leader, but the rest of the group did not follow his lead. 

In those groups a more equal discussion occurred, and those groups were not considered here. 

In the groups where the interaction included an “expert” and a “follower”, the discussion was 

less equal. This allowed me to examine the processes of mathematical learning in an unequal 

interaction.  

In Group S3-2, a mixed gender pair with an unequal interaction, difficulty agreeing on a 

proof was observed. This pair, Ben and Alice, was also noted in the teaching journal. The 

pair’s final solution was non-canonical, and Alice presented it to the class while stating, “I 

don’t agree with this”. This incongruity between Alice’s comments and her actions offered an 

opportunity to examine the processes involved when the mathematical activity is hindered by 

the social interaction. 

4.3 Analysis 

4.3.1 Commognitive analysis of the tasks and their potential for supporting explorative 

participation 

Seven tasks were designed for the workshops to achieve the first research goal of adapting 

learner-centered practices to an undergraduate setting. I examined their potential for 

supporting explorative participation to answer the first research question (RQ 1) by first 

asking what are the objects that can be exposed through the tasks, their different realizations, 

and the opportunities for saming that can be afforded. To answer this question, I developed 

the Discourse Mapping Tree (DMT). This is an adaptation of Weingarden and colleague’s 

(2019) Realization Tree Assessment (RTA) tool, which was based on Sfard’s (2008) notion 

of realization trees and explained in the theoretical background. The RTA was used to map 

the engagement with mathematical objects in discussion-based lessons by mapping which 

realizations were mentioned during a discussion and which links were constructed. In 

contrast to the RTA, the DMTs were constructed as a way of examining the potential of a 

task, independent from the implementation of the lesson. 

4.3.1.1 Constructing the DMTs 

 The DMT is based on the notion of an object being a “signifier together with its realization 

tree” (Sfard, 2008). It is a visual representation of realizations of a mathematical object and 

the connections between them. The first step in constructing a DMT is determining the root 

node that is appropriate for a certain task, which is not necessarily straightforward. This is 

since, first, the object at the center of the task is not always stated clearly in the task. Second, 

theoretically, all realizations of an object are equivalent and thus any realization can be the 

root node. For convenience, the root node was chosen as the title given to the central object 

of the task, as it is given in textbooks (for example: “Complex number” or “Diagonalizable 

matrix”). 

The mathematical objects determined to as the node of DMTs are families of objects, unlike 

the RTA and realization trees which use single objects as the node. For example, the RTA 

might use the object f(x) = 2x-4, whereas the DMT uses “linear functions”. This modification 
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was necessary as the tasks and discussions in the workshops involved families of 

mathematical objects, and not specific mathematical objects.  

The next step of constructing a DMT is listing the object’s realizations and grouping together 

realizations of similar type. I used the theory and definitions given in textbooks to find 

realizations and also examined multiple solutions to find more. Additionally, student 

discourse from the workshops, from tutorials, from midterms and exams, from homework 

sets and from questions posed over the course of the semester proffered many realizations.  

Each type of realization usually belongs to a certain discourse; thus, it has its own keywords, 

its own narratives and its own routines of manipulation. Each type of realizations was placed 

in a separate branch of the DMT. This process is detailed in the findings section. Below is an 

example DMT for the mathematical object “complex number”, which can be realized in the 

subdiscourse of algebraic representation (e.g. 3+4i), in the subdiscourse of geometric 

representation (i.e. a dot on a plane), in the subdiscourse of the polar, or trigonometric, 

representation (e.g. 5cis53.13°), in the subdiscourse of ℝ2 (e.g. (3,4)), or in the subdiscourse 

as the root of a polynomial (e.g. a root of p(x) =  x2-6x+25). Each one of these discourses is 

represented by a branch of the DMT shown below. 

 

Figure 4-1 - DMT for "complex number" 

Once DMTs are constructed for a designed task, they display the objects that can be exposed 

through the task, its different realizations, and the opportunities for saming offered by the 

task. The DMTs showed whether solving the tasks included multiple branches. 

4.3.1.2  Micro-analysis of tasks to examine if the task necessitated the use of multiple realizations 

and multiple subdiscourses 

The DMTs showed whether the use of multiple branches was possible to solve the tasks, yet 

they did not show if solving the task necessitated this. The extent to which a task demanded 

the use of more than one (object-level) branch was analyzed by a micro-analysis of the 

mathematics involved in the tasks. First, the possible solutions were discussed and approved 

by mathematical experts as possible that the task could be solved using this path, as probable 

that a student would suggest such a solution, and as correct mathematically. Each step of 

these solutions, or routines, was characterized by within which discourses they were 

authored, and which realizations of the object they utilized. This mapped the routine onto the 

constructed DMT and displayed if the suggested routine traversed multiple discourses. Next, 
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the task was examined if it could be solved based on a single discourse or whether it 

necessitated traversing multiple discourses. This was done by studying the application of 

familiar routines, taught and rehearsed in the course, to the task at hand.  

4.3.2 Examining extent opportunities for meta-level learning were taken up  

I used recordings of the whole classroom discussions to answer the second research question 

(RQ 2). These were examined to study to what extent the potential of the tasks were taken up 

in the implementations in the workshops by mapping which subdiscourses were mentioned, 

which connections between subdiscourses were authored and who authored these. For this, I 

used the DMTs to construct DDMT (Discussion Discourse Mapping Tree), basing the 

procedure for this on what Weingarden and colleagues (2019) used for mapping middle 

school classrooms. My goal for mapping the whole class discussions in the workshops was to 

examine if there were realizations from within different discourses and if connections 

between these discourses were authored. 

Mapping a discussion through construction of a DDMT included both a priori and a posteriori 

components. The branches of the DDMT for a workshop were drawn a priori using the 

branches from the DMT constructed for the object embedded in the task given to the students 

in that workshop. The branches available in the DDMT are the subdiscourses available within 

which object-level narratives can be authored about this object. This is exemplified for the 

discussion in Workshop W1 about complex numbers. The initial DDMT for this workshop 

was as below in Figure 4-2. 

 

Figure 4-2 Available discourses for DDMT 

The realizations shown on the DDMT were drawn a posteriori based on the realizations 

mentioned during the discussion in class. The drawing and classifying of realizations and 

links are exemplified on the DDMT constructed for Workshop W1 about complex numbers. 

In that DDMT a realization was drawn when a student wrote on the board that (2+3i)2 = 

(2+3i)(2+3i) = 4+12i -9 = -5 +12 i. The narrative authored by the student is within the 

algebraic representation subdiscourse, as indicated the keywords, such as 2+3i, and 

metarules, such as (a+b)2 = a2 +2ab +b2, from that discourse. The realization drawn is the 

mathematical object that the narrative describes and manipulates, which is (2+3i)2 as a 

product of two terms. Thus, this realization, (2+3i)2 = (2+3i)(2+3i), was drawn on the DDMT 

on the branch of the algebraic subdiscourse and is labelled I in Figure 4-3, below.  Following 

the student’s explanation of what was written on the board, I (the instructor) asked, “How can 

we calculate (2+3i)17?” This narrative is also within the algebraic subdiscourse yet has a 
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different object – the complex number which is the outcome of (2+3i)17.  Therefore, this 

realization, labelled II in Figure 4-3 below was drawn.   

 

Figure 4-3 - DDMT W1 - Complex numbers 

Adapting the methodology used by Weingarden and colleagues (2019), originally used on 

RTAs, the realizations were shaded in dark gray if a student authored the realization and light 

gray if the instructor authored the realization.  

In addition to the realizations, I marked whether there was any saming between different 

types of realizations and who authored these. Horizontal links between the different branches 

of the tree were drawn. A solid line was drawn if a student authored a link between 

realizations, and a broken line was drawn if the link was authored by the instructor. For 

example, when I asked the class, “How can this complex number (pointing to 1+i on the 

board) be represented in its geometric form?” This offered the students the opportunity to 

author a realization of 1 + i in a different subdiscourse and to connect it to a realization in the 

algebraic representation subdiscourse. The student authored the realization r cis θ in the polar 

subdiscourse. The link authored between these realizations was then marked in the DDMT 

(line III in Figure 4-3, above). Answering the question, “How can we calculate (2+3i)17?”  a 

student said, “We can change it to polar representation and then use de Moivre(‘s formula).” 

This narrative connected between a realization in the algebraic and a realization in the polar 

subdiscourse (line IV in Figure 4-3).  

The DDMTs provided an image of the whole class discussions that allowed me to examine 

the characteristics of the discussion and to what extent opportunities for meta-level learning 

were taken up. This is detailed in the findings section. The specific realizations that were 

mentioned were less crucial for this analysis. The specific realizations indicate object-level 

narratives, from within a subdiscourse. The object-level narrative used is an integral part of 

the meta-level learning but are not the focus of this analysis. The analysis focused on the 
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subdiscourses used and the connections between them. The DDMT maps this, while also 

displaying which realizations were authored and by whom. 

4.3.3 The intertwining of mathematical narratives and communication 

The third research question (RQ 3) pertains to examining the learning processes in small 

group discussions without the support of an expert. These were analyzed for the 

mathematizing and for the communication patterns. 

4.3.3.1 Analyzing mathematical discourse 

The communication in a mathematical classroom includes mathematical narratives that relate 

to the objects, routines and mediators, and narratives that relate to other subjects or to other 

people (Heyd-Metzuyanim & Sfard, 2012). The learning process involved in the small group 

sessions were first examined through the students’ mathematical routines.  

The interaction was analyzed for its mathematical content by examining the mathematical 

routines as a task and procedure pair (Lavie et al., 2019). The mathematical routines used by 

the pair were delineated, and the task and procedure pairs were determined. The tasks each 

student was solving were established from the narratives they offered, and incomplete 

statements were filled in, using prior and subsequent statements. This was determined for the 

initial, individual routine of each student, when available, and also for pairs’ co-constructed 

mathematical routines to examine if and how the interaction modified their mathematical 

narratives. For the co-constructed routines, who authored each mathematical statement and 

who adopted each statement was determined. This also allowed me to examine how the 

students’ mathematical routines were modified.  Once the pair’s implementations of the 

problem-solving routine were established, they were compared to ascertain if they were 

mathematically aligned, that is, if they were consistent to an expert, external observer.  

The mathematical narratives were also analyzed to differentiate between object level 

narratives and meta level narratives to examine if the learning process was impacted by 

whether the communication was around object-level or meta-level rules. These included 

implicit mathematical narratives that were not declared verbally by the participants but were 

implied by their verbal statements. Additionally, the objectification process of the students 

was examined to support the analysis of their mathematical activity. This analysis showed a 

detailed depiction of the mathematical activity involved in the pairs’ interactions. 

4.3.3.2 Analyzing the communication in a dyadic mathematical discussion 

The learning processes in small groups is intertwined with the students’ communication 

patterns, so these were next analyzed to allow me to examine the patterns of the students’ 

communication. The communication was analyzed by studying the channels of 

communication used by the students for their mathematical communication. The students’ 

discourse, as in all dyadic interactions, occurred in two channels simultaneously (Sfard & 

Kieran, 2001). The first channel was the personal channel, which focuses on the student’s 

own reasoning and ideas. The second channel is the interpersonal channel, where the 

participants in the discussion are focused on their partner’s reasoning and ideas.  
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To analyze the students’ channels of communication, the transcript of their discussions about 

the tasks were first segmented into mathematical narratives. This allowed the examination of 

how each pair listened to each other’s mathematical ideas - if they were attending to the 

mathematical content of each other’s narratives and how they were actually participating in 

the discussion.  

The narratives were classified as either occurring in the private channel, the interpersonal 

reactive channel or the interpersonal proactive channel. The utterances were classified as in 

the personal channel when one of the students communicated with him/herself about his/her 

ideas, although it could be out loud. For example, while a student was attempting to figure 

out a solution to a task, he stared at the paper or at the ceiling and stated his ideas out loud. 

He was communicating to himself about his ideas and the presence of the other student was 

ignored. This utterance was marked as having taken place in the personal channel. The 

interpersonal channel of communication included students asking for corroboration of a 

claim, giving corroboration of a claim, questioning another’s claim and answering a question 

asked by another student. The interpersonal channel includes reactive utterances, where the 

utterance is a reaction to another’s utterance, and proactive utterances, where the utterance is 

aimed at getting a reaction from the other participant in the discourse. These were all marked 

in the transcripts of the pairs’ discussions. This classification allowed me to examine how the 

patterns of the students’ communication supported or hindered change in their mathematical 

routines. 

4.4 Trustworthiness 

This study used qualitative methods of analysis and the commognitive framework within the 

relativist-constructivist paradigm, which maintains that knowledge and learning are a 

construct of human social interactions (Denzin & Lincoln, 2011). The trustworthiness of a 

qualitative study is gauged by its credibility, dependability, transferability, and confirmability 

(Denzin & Lincoln, 2011). In this project we used prolonged engagement with the data, 

expert debriefings, and a rich description of the data to establish the trustworthiness of the 

findings. The recordings of the discussions were studied extensively and repeatedly. The 

findings were discussed with experts in commognitive analysis and experts in mathematics. 

The data collected was presented in detail.  

Some threats to the trustworthiness of the study derive from my studying the learning 

processes in workshops that I designed, planned and implemented as the instructor. A 

participant in the sessions acting as a researcher is a complex situation that might influence 

the subjectivity of the analysis and might compromise the expected role as a participant. 

Additionally, the students were aware that the workshops were being recorded, and thus their 

behavior might have been artificial. The cameras placed around the room could have 

inhibited students from talking freely. This too needs to be addressed. 

My dual role as both a participant in the workshops and as an observer to the workshops is 

termed a participant observation (Rensaa, 2018). Rensaa suggested that participant 

observation reduced interference in the general running of the course and was more natural to 
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the students than non-participant observation. Familiarity with the students and the classroom 

seemed to lead to the students behaving more naturally. Introducing an external observer into 

the classroom would have influenced both the students and me. Digital recording minimizes 

the intrusion from classroom observations (Wragg, 2011). Additionally, the observer role was 

minimized during the actual workshops, since the video recording freed me from the 

necessity of remembering what happened. I was too involved in teaching to take notes during 

the workshop.  

The possibility of compromising the instructor role is also an issue. The dual role of a 

researcher and a teacher can enhance both roles, yet one must be aware that a teacher-

researcher’s first responsibility during class is to be a teacher (Tabach, 2011). During the 

sessions I was the instructor, and so focused on that aspect of my dual role. Practically, while 

I was teaching, I became involved in the lesson and mostly forgot the research aspect of the 

workshop session. However, I did find myself infrequently, subconsciously noting incidents 

that would be interesting to analyze. The researcher role protruded into the teacher role only 

in a fleeting manner. Immediately after the sessions were over, I recorded an audio journal 

entry about the session, and then switched to researcher role. The analysis of the data, which 

was done after class while in researcher mode, helped me be a better teacher. Critically 

engaging with one’s own teaching practices supports the development of these practices by 

making the specific teaching goals more explicit (Jaworski, 1998). I am also more aware of 

student difficulties and possible issues that can arise in class due to watching and re-watching 

the recorded videos. Both roles - teacher and researcher - are enhanced by the other role. 

4.5 Ethical Statement 

This project was reviewed and approved by the Behavioral Sciences Research Ethics 

Committee of the Technion - Israel Institute of Technology (Certificate No. 2019-063). It had 

the approval of the Vice Dean of Undergraduate Studies of the Mathematics Department, the 

Head of the Technion International School of Engineering, and the courses’ staff. The students 

signed an informed consent form. All names are pseudonyms and confidentiality of the 

students was preserved throughout the analysis and the writing.  
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5 Linear Algebra Tasks 
In this section the tasks used as the basis for the workshops are examined. The workshops 

were designed to support explorative participation through discourse rich instruction. Thus, 

the tasks, which are at the heart of the workshops, must have the potential to spark a 

meaningful academic discussion and the potential to support explorative student 

participation. The potential of a task for explorative participation was operationally defined, 

in the theoretcial background, as the existence of the possibility of presenting different 

realizations for mathematical objects and the possibility for authoring links between these 

realizations. As different realizations and links between them can support meta-level 

learning, the tasks were also analyzed for evidence of the meta-level and object-level learning 

involved in solving them. 

I first present the DMT tool developed and used to explore the mathematical objects that can 

be exposed through the tasks, the different realizations of these objects and the opportunities 

for saming that can be afforded by these tasks. The DMT tool, discussed in the methods 

section in detail, is a visual representation of the realizations of a mathematical object and the 

subdiscourses available to the students within which the object can be realized. This allowed 

me to examine the potential of the tasks for supporting a meaningful academic discussion 

with multiple realizations from within multiple subdiscourses.   

Then I present a commognitive analysis of the discourses involved in solving these tasks to 

examine if, and how, these tasks could support meta level learning in a classroom. The links 

between the different realizations, displayed in the DMTs, and the transitions between the 

different subdiscourses involved in each task are considered to examine the potential for 

object-level learning and meta-level learning. 

The findings are first exemplified in detail for a specific task, and then described more 

generally for the other tasks later in this section. Thus, the findings pertaining to the SLE 

(systems of linear equations) task is first presented. The tasks are named by the topic they 

were designed to be used for. 

5.1 The objects that can be exposed through the SLE task, their different 

realizations, and the opportunities for saming 

In this section the objects that can be exposed through the tasks, their different realizations, 

and the opportunities for saming were examined by constructing and examining a DMT for 

the SLE task. First the process of constructing a DMT for a mathematical task is detailed and 

then what objects that can be exposed through the tasks, their different realizations, and the 

opportunities for saming are described.  

5.1.1 Construction of a DMT exemplified on the SLE task 

This section describes the process used to construct a DMT for the following task. 

Task: Give a system of linear equations whose solution is the set {(x, 2x, 3x) | x ϵ ℝ}. 

5.1.1.1 Constructing a DMT Step 1: Determine the root node 

The construction of a DMT starts by determining the root node, which is the mathematical 

object involved in the task. The task here is to determine what system will have the given set 

as its solution. Solving this task includes, mainly, the exploration of the system of linear 

equations (SLE) object, thus the mathematical object is the system of equations. The wording 
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of the task, “Give an SLE…” also shows that this is the main object embedded in the task. 

The SLE object has many realizations, and theoretically, all realizations of an object are 

equivalent. Thus, any realization can be the root node. For convenience’s sake, the title given 

to the object in textbooks was chosen as the title in the root node. Therefore, the root node of 

the DMT for the mathematical object of this task was chosen as “SLE”.  

5.1.1.2 Constructing a DMT Step 2: List possible realizations and types  

In the next step of constructing the DMT, possible realizations are listed, and general types 

found. Below are realizations that can be used in solving the above task and realizing an SLE. 

First, an SLE can be realized as a list of linear equations with variables. This realization is 

familiar to most secondary school students. For example: 

{
2𝑥 − 𝑦 = 0
3𝑥 − 𝑧 = 0

   or  {
2𝑥 = 𝑦

5𝑥 =  y +  z
 

The next realization is one to which students are exposed during the beginning of a linear 

algebra course, that of an augmented matrix. Specifically, for the SLE considered in this task, 

the matrix could look like this:  (
2 −1 0
3 0 −1

|
0
0
).  

An SLE can also be realized by a solution set, in this example {(x, 2x, 3x) | x ϵ ℝ}. These are 

the constraints on the solutions to the desired system. This realization does not uniquely 

characterize an SLE, as there are infinitely many SLEs with this solution set. However, they 

are equivalent in the sense that the Gaussian matrix representing these systems will have the 

same row space. This can be realized as a general element of a set: {(x,2x,3x) | x ϵ ℝ}, the 

linear span of a finite set: Span{(1,2,3), (4,8,12)}, or the kernel of a linear transformation: 

Ker (T(x,y,z) = (y-2x,z-3x)).  

An SLE is a mathematical object, and thus can be realized by its properties. For example, the 

system consists of 2 equations with 3 variables, it is a homogenous system, and it has a 

system rank of 2. This type of realizations also does not uniquely characterize a unique SLE, 

but rather are for a family of SLEs. However, they do realize the desired SLE.  

There are also properties of the SLE which pertain to the SLE’s solution set which realize the 

SLE. These include properties such as the zero vector is a solution of the SLE, the solution of 

the SLE has one degree of freedom, and there is a single parameter in the solution set of the 

SLE. These realizations also are for a family of SLEs, and not a unique SLE, similar to the 

previous type of realizations. 

An SLE and its solution set are realizations of the same mathematical object. They both give 

conditions on a set of vectors; however, the system of equations is the list of conditions, and 

the solution set is the vectors that fulfill those conditions. The difference can also be 

described as the solution set is explicitly a set of vectors with constraints, whereas the list of 

equations realizes the set of vectors that solve the system, but it is not stated, nor symbolized, 

explicitly that it is the set of solutions of the system of equations.  

These realizations above were authored by an experienced instructor familiar and 

knowledgeable with the mathematical topics and notions involved. There are also realizations 

mentioned by students during the workshops. New realizations can keep being authored, 

however there is no need to give an exhaustive list of all the possible realizations. Since the 
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ultimate goal of this process is determining the types of realizations, that is the subdiscourses 

involved or the branches in the tree, the list given needs to be sufficient for this purpose. If 

there are additional realizations and additional types of realizations, these can be added to the 

DMT. Therefore, the process of listing realizations has an end. 

Additionally, I needed to determine which realizations are repetitions. For example, are the 

realizations x+y=3 and 2x+2y=6 equivalent, and thus the second one is redundant and should 

not be included? Are the realizations x+y=3 and 3=x+y equivalent? The answers to these 

questions depend on the audience’s mathematical metarules. The answers would be different 

if an elementary student was asked, if a first semester university student was asked or if a 

mathematical researcher was asked. The realizations x+y=3 and 3=x+y would be considered 

the same using the metarule of commutativity which a mathematical researcher would have 

adopted. In contrast, a 6 year old would probably not yet have adopted this metarule.  The 

DMTs constructed were based on the students participating in this project, namely first 

semester students. Thus, mathematical equivalencies like x+y=3 and 3=x+y are considered 

repetitive, since commutativity is a metarule usually adopted in pre-university school. In 

contrast, since systems of equations are new objects for the students, x+y=3 and 2x+2y=6 are 

considered disparate realizations.  

5.1.1.3 Constructing a DMT Step 3: Determining the branches of the DMT. 

In this step of constructing a DMT, realizations are placed in branches of the tree, each type 

of realization in its own branch. Thus, in this step a classification of the types of realizations 

is carried out. Each type of realization is a different subdiscourse, as can be seen from the 

different keywords, different procedures and narratives that can only be stated within that 

subdiscourse. For example, the realization (
2 −1 0
3 0 −1

|
0
0
) uses matrices, rows and rank as 

keywords. The procedures include row reduction and determining rank. The narrative Rank 

(A) = Rank (A|b) cannot be stated in the subdiscourse of lists of equations. Thus, the 

realizations with matrices were all classified as in the subdiscourse of matrices.  

Four types of realizations, or subdiscourse, for the mathematical object SLE were 

determined. These are lists of equations, matrix representation, properties of the SLE and the 

solution space. The solution space can be realized as a set or as a vector space, since the set 

of vectors {(x, 2x, 3x) | x ϵ ℝ} is both a subset and a subspace of ℝ3. Therefore, there are five 

types of realizations, or five branches in the tree. As described in the theoretical background, 

the choice of branches, or subdiscourses, is supported by the historical development of the 

representations of SLEs. 

5.1.1.4 Constructing a DMT Step 4: Drawing the DMT. 

This step is drawing the actual tree. The node chosen in Step 1 is the root of the tree. The 

branches of the tree are the types of realizations found in Step 3, which are the historical 

domains or the subdiscourses involved for the SLE object. The realizations are those listed 

during Step 2. 

The realizations included in the branch of subspaces are presented to the students much 

further on in linear algebra courses and are not available to students first learning about SLEs. 

Expert mathematicians and students with prior knowledge would use these realizations, and 

students solving this task at a later point in the course would also be familiar with this type of 
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realizations. This branch of the DMT is shaded grey to signify that this branch exists, but that 

it is not available to the students. 

The DMT for the above task, which deals with the mathematical object SLE is shown in Figure 

5-1, below. 

 

Figure 5-1 - DMT for SLE task 

5.1.2 Objects that can be exposed through the SLE task, their different realizations, and the 

opportunities for saming 

By examining the DMT displayed in Figure 5-1 the objects that can be exposed through the 

SLE task, their different realizations, and the opportunities for saming are apparent. The 

DMT demonstrates that embedded in the task there were at least four different types of 

realizations available to the students, as seen in the major branches stemming from the root 

object. That is, realizations in four different discourses are available in this task. This shows 

that there were multiple opportunities for students to same the various realizations of the 

mathematical objects.  

The process of constructing DMTs allowed us to pinpoint the objects exposed by the task and 

the number of realizations for these objects that had been learned in the course. This offers a 

general view of the richness embedded in each task, that is, that in these tasks there exists the 

potential for multiple realizations and for constructing saming links between them. The 

multiplicity of these realizations demonstrates the potential of the task to support explorative 

participation, 

5.1.3 Object-level learning and meta-level learning involved in the SLE task 

In the previous section the DMT constructed for the SLE task displayed that the potential for 

multiple realizations in multiple discourses exists in this task. This also demonstrates the 

opportunity for both object-level learning and meta-level learning. 
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The DMT demonstrates the opportunity for object level learning, that is the opportunity for 

adopting new object level narratives in an endogenous development. The students are 

afforded the opportunity to author narratives within each of the subdiscourses displayed on 

the DMT. These can include authoring a realization within a subdiscourse or saming between 

two realizations within the same subdiscourse. For example, saming two mathematically 

equivalent lists of equations. The saming is within a single discourse and thus does not 

involve meta-level learning. This type of learning is also important for students, yet is more 

readily available in most standard tasks, and thus is not the focus of these tasks.  

The DMT also demonstrated that the SLE task has opportunities for meta-level learning of 

adopting object related metarules in horizontal exogenous development. This includes the 

authoring of narratives in the coalesced discourse connecting between two subdiscourses. The 

DMT shows that the opportunity for unifying the different subdiscourses for each 

mathematical object in this task are available. The potential for constructing links between 

the branches of the DMT signals the potential for meta-level learning. For example, the 

narrative the rank of the matrix is 2, so the system of equations has 2 linearly independent 

equations. This narrative connects between a realization in the matrix subdiscourse (the rank 

of the matrix is 2) and a realization in the list of equations subdiscourse (has 2 linearly 

independent equations). Thus, this is a narrative in the coalesced discourse of SLEs and 

authoring this is meta-level learning. 

The DMT displays the availability of multiple realizations in different discourses and thus 

shows that the SLE task affords opportunities for saming different realizations in different 

subdiscourses. Thus, the task has the potential to encourage and support objectification of the 

mathematical object SLE. However, the DMTs do not allow us to see the extent to which the 

task demanded the use of more than one (object-level) branch, only that the potential exists.  

For this, a more micro-level analysis of possible routines for solving the tasks is necessary. 

5.2 A commognitive analysis of the SLE task 

A commognitive micro-analysis of the discourses involved in solutions of this task were 

carried out. The solutions to the tasks were examined to determine if they could be obtained 

by following familiar routines from one discourse, or whether the solution necessitated 

following routines from different discourses. 

First a possible solution was described to analyze the mathematical narratives necessary for a 

solution to the task. There are many possible solutions, this one was determined to include 

the necessary narratives of any solution by mathematical experts. This is explained in detail 

later. Next, the discourses involved in this solution were examined. Finally, the transitions 

between the discourses were considered. This is discussed in the following sections. 

5.2.1 Possible solution for the SLE task  

Following is one possible solution  (out of many) for the SLE task. 

Task: Give an SLE whose solution is the set {(x, 2x, 3x) | x ϵ ℝ} 

The solution is presented below. The realizations used in the narratives are numbered to 

correspond to the node in the DMT of the task, in Figure 5-2 below the solution.   
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Solution: 

 (a) There are 3 places in the general element of the given set (16) that solves the SLE so there 

are 3 variables in the expected SLE (2). 

(b) The general element of the set that would solve the expected SLE can be expressed using a 

single parameter (19), which is equivalent to stating that there is one degree of freedom in the 

expected SLE (6). 

(c) The degrees of freedom of an SLE (6) is the number of variables (2) less the rank of the 

representative matrix (14), thus the rank of the system is 2 (4). That is, there are two 

independent equations in the expected SLE (1). 

(d) The elements of the set that solves the SLE are the 3-tuples whose second element is 

double the first element and the third element is triple the first element (17), thus the 

conditions on the set can be expressed as y = 2x & z = 3x & x, y, z ϵ ℝ (hybrid between 7 & 

18) or as 2x – y = 0 & 3x – z = 0 & x, y, z ϵ ℝ (hybrid between 8 & 18). 

(e) The solution to the task is the SLE which is {
2𝑥 − 𝑦 = 0
3𝑥 − 𝑧 = 0

 (8) or (
2 −1 0
3 0 −1

|
0
0
) (12). 

 

In the figure below, Figure 5-2, the realizations mentioned in this solution are shaded grey. 

The branch of subspaces is faded out, as it was not available to the students at this point in the 

course. This demonstrates that the realizations included in this solution are from multiple 

discourses, as there are shaded boxes in each branch of the DMT. 

 

 
Figure 5-2 – DMT SLE possible solution   

Although there are many possible different solutions to this task, there are certain narratives 

that must be included in any solution. First, the number of variables in the system must be 

determined. Although the narrative there are n variables in the system may be implied, and 

not stated out loud, it will be included in any solution when the suggested system is written 

out using n variables. Any solution must include writing down a realization of an SLE, and 

thus the number of variables or the number of columns in a matrix must be determined. 
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Similarly, the narrative there are at least m equations in the desired system must also be 

included. Any solution must determine how many equations to write down, and this must be 

determined somehow. Any solution written down will also include determining if the system 

if homogeneous or not (Ax = b is homogeneous if b=0). As with the other narratives, this 

might not be explicit but implied by the final solution. The solution described above includes 

these narratives and can be considered typical of any solution for the task in that respect.  

I now present an alternative solution and show that these narratives are present. This solution 

is based on student unsuccessful attempts at a solution. 

Additional Solution:   

a) The equations in the requested SLE are of the form ax+by+cz=d. 

b) The system is homogeneous, thus d = 0. 

c) Plugging in the given solution, (x,2x,3x) yields: 

ax + b(2x) +c(3x)=0 

d)  Thus, a+2b+3c =0 

e) Choose various a,b,c ∈ ℝ such that this holds. 

f) {

𝑥 −
𝑧

3
 = 0

𝑦 −
2𝑧

3
 =  0

−3𝑥 + 𝑧 = 0

is such an SLE 

This solution includes the narrative there are n variables in the system in step (a). The 

determination of the structure of the desired equation includes the number of variables. Step 

(b) is the narrative the system is homogeneous. In step (e) of the solution the narrative there 

are at least m equations in the desired system is implied in the choice of how many different 

values to determine for a,b and c.  

The original solution presented earlier, the solution presented here, and any other solution of 

this task includes some mandatory narratives. Therefore, the solution suggested above, which 

includes these aspects of any solution, was analyzed in detail to explore this task. 

5.2.2 The discourses involved in solving the SLE task 

The above solution was just one of many possible ways to solve the task. Nevertheless, 

examining more closely how it transitions between discourses demonstrates that this task 

encourages such transitions. To do so, the objects involved in each step of the solution were 

examined to determine which discourses are involved in solving this task.  

There are two main mathematical objects of this task – a list of equations and the set 

{(x,2x,3x) | x ϵ ℝ}. The major meta-level task of this question is the saming between the 

discourse of SLEs and the discourse of sets. The objects from these, and other, discourses 

involved in the solution presented above are examined. 

In the possible solution given in the previous section, the statements are labelled by letters, 

(i). In the first statement (a) “the number of places in the general element of a set”, an object 

from the Set discourse, is stated to be equivalent to “the number of variables in the SLE”, an 

object from the SLE discourse. The second statement (b) equates “the number of 
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parameters”, an object from the Sets discourse, with “the degrees of freedom”, an object from 

the SLE discourse. Statement (c) contains objects from the SLE discourse – “degrees of 

freedom”, “number of variables” and “number of independent equations” – and links to an 

object from the Matrix discourse – “rank(A)”. These statements present objects from the 

discourses of Sets, SLEs and Matrices and states saming links between the various objects. 

Statement (d) entails hybrid mathematical objects, that is objects that are constructed from 

two discourses. The conditions on the set are presented in the Sets discourse as “the second 

element is double the first element and the third element is triple the first element”. These are 

then presented written algebraically as a list of equations, “y = 2x & z = 3x & x, y, z ϵ ℝ”. 

The conditions on the set as a list of equations uses the Sets discourse and the List of 

Equations discourse. The final statement (e) recognizes these algebraic conditions from the 

List of Equations discourse as the SLE the task searched for.   

This solution used four different types of discourse – Properties, Matrices, Lists of Equations 

and Sets. These are the different branches displayed in the DMT above. 

The number of equations and variables in the expected system must be determined as part of 

the solution, and this includes narratives in the “properties of SLE” discourse. Degrees of 

freedom is a nascent vector space term that symbolizes the rank of a vector space, without 

any formal definitions. This hybrid construct is a scaffold used when SLEs are presented in 

the course before vector spaces. This order of topics allows SLEs to be used as an illustrative 

example of a vector space and supports intuitive understanding of the vector spaces. The SLE 

discourse is new to the students and is introduced and exemplified in the lectures and 

tutorials.  

The Matrix discourse is used to discuss representative matrices of coefficients of SLEs, such 

as used in the Gaussian method of solving an SLE. This discourse includes matrices, 

augmented matrices, row reduction and echelon form. These objects are part of the topics 

introduced to the students in the course before SLEs are introduced. The efficiency of the 

matrix realization and the integral part it plays in the process of finding a solution to a system 

supports the students’ adoption of it almost immediately and. exclusively once they are 

introduced to it. Thus, a matrix representation of an SLE can be considered an acceptable 

solution to the task. The matrix discourse is also necessary to determine if a suggested SLE is 

a solution to the task, by using matrix representation and the Gaussian method to solve the 

suggested system. The phrasing of the task necessitates the Sets discourse, and the final 

answer to the task is from the List of Equations discourse.  

Examining this solution displayed that four different subdiscourses– Properties, Matrices, 

Lists of Equations and Sets – are involved in solving this task. 

5.2.3 Transitions between discourses included in the solution 

The presented solution included four different subdiscourses, as shown above. In this section 

the transitions between these discourses are examined. These transitions between discourses 

support the saming of realizations between the different discourses. 

The task, as phrased, includes transitions between discourses. The beginning of the task, 

“Give an SLE whose solution is…”, belongs to the List of Equations discourse involving 

“equations” and “solutions” of these equations. If a student employed the familiar routines of 

solving sets of equations, from high school or Gaussian elimination, they would reach an 
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impasse, since those routines are appropriate for finding a solution of a given system. 

However, in this task a student must first construct a system. The last part of the task, namely 

“the solution is the set {(x, 2x, 3x) | x ϵ ℝ}”, belongs to the Sets discourse. As the expected 

answer is a list of equations or a matrix representation, the Sets discourse is also not 

sufficient. Thus, any solution necessitates tapping multiple discourses and linking between 

them. 

The task states that the solution is “the set {(x, 2x, 3x) | x ϵ ℝ}”, from within the Sets 

discourse. Thus, solving this task begins in the Sets discourse. Possible routines available to 

students in this discourse could be phrased as answers to sub-tasks such as “what can we say 

about this set?”, or “how would we characterize the elements of this set?” The narratives 

resulting from these sub-tasks would include, “For every real value x the 3-tuple (x,2x,3x) is 

in the set” or “The set is a subset of all the 3-tuples that can be expressed using a single 

parameter”. However, after authoring these narratives the students are liable to again reach a 

“dead-end”. There are no available routines within the discourse of sets to continue with 

these narratives, especially not any that would lead them to saying anything about “an SLE” 

of which this set is “a solution”. Thus, this task cannot be solved within the discourse of Sets. 

One very familiar routine for obtaining a “solution” for an SLE is that of Gaussian 

elimination within the matrix discourse which entails representing a system as a matrix, 

reducing it to echelon form and utilizing the row-equivalent system to determine the solution 

space. This is the main, standard routine used in solving SLEs, thus the students would turn 

to this routine. However, in this task no system is given. There is nothing to “reduce”. The 

students must construct their own system (where the solution is given) and the familiar 

routines for finding solutions are not helpful for that. This task cannot be solved using 

exclusively familiar routines from within the matrix discourse. 

Another routine for solving the task would be to suggest random SLEs and examine the 

solution space of these, in an attempt to discover an appropriate SLE. This trial-and-error 

process, with no operational method of choosing equations from among infinite possibilities 

is not practical and leads to frustration at the enormity of the task. Thus, the familiar routines 

in the discourse of SLEs and Matrices are not sufficient and again lead to “dead-ends”.  

When students reach an impasse, and cannot continue, they can be guided to search in other 

discourses for a possible routine. Thus, the routines of “what can we say about this set” can 

be shifted to the discourse of SLEs, which includes the term “degrees of freedom”. The new 

task can be “what can we say about this set in the SLE discourse” and can result in the 

narrative, “there is one degree of freedom in the set”. This narrative can prompt a familiar 

routine in the discourse of SLEs/Matrices, which uses the endorsed narrative in this 

discourse: degrees of freedom is equal to the number of variables less the rank of the system. 

Thus, the transition between the discourse of Sets to the SLE discourse can be encouraged. 

Similarly, the narrative “the conditions on the set can be expressed as y = 2x & z = 3x & x, y, 

z ϵ ℝ” which is within a hybrid of the discourse of Lists of Equations and the discourse of 

Sets brings the student to an impasse within the discourse. Completing the task by 

recognizing this as the SLE necessitates transitioning out of the discourse of Sets, and saming 

this set with an SLE. 
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Solving this task includes the narrative the SLE has three variables since the general element 

of the given set of solutions has three places. The first part of this narrative, three variables, 

is from within the discourse on properties of SLEs and is marked (2) in Figure 5-2. The 

second part, the general element of the given set of solutions has three places, is from within 

the discourse on sets and is marked as (16) in Figure 5-2. The narrative traverses two 

discourse and cannot be stated in either of the discourses singly. This narrative can only be 

stated in the new coalesced discourse of both the discourse of Sets and SLEs together.  

This is displayed in Table 5-1, below. This table shows a possible subroutine for solving the 

task together with an analysis of the discourses traversed in each sub-routine. The narrative 

described above is labeled (a) and is the first row of the table. The nodes on the DMT (Figure 

5-2) that represent each realization are marked in parentheses.  

 

Routine sub-step Discourse traversed 

a) There are 3 places in the general element of the given set 

(16) that solves the SLE so there are 3 variables in the expected 

SLE (2). 

Sets (general element) → 

Properties of SLE (3 

variables) 

(b) The general element of the set that would solve the expected 

SLE can be expressed using a single parameter (19), which is 

equivalent to stating that there is one degree of freedom in the 

expected SLE (6). 

Sets (general element) → 

Properties of SLE (degree 

of freedom) 

(c) The degrees of freedom of an SLE (6) is the number of 

variables (2) less the rank of the representative matrix (14), thus 

the rank of the system is 2 (4). That is, there are two 

independent equations in the expected SLE (1). 

Properties of SLE (degree 

of freedom, number of 

variables) → Matrix 

discourse (rank of matrix) 

→ SLE (two independent 

equations) 

(d) The elements of the set that solves the SLE are the 3-tuples 

whose second element is double the first element and the third 

element is triple the first element (17), thus the conditions on 

the set can be expressed as y = 2x & z = 3x & x, y, z ϵ ℝ 

(hybrid between 7 & 18) or as 2x – y = 0 & 3x – z = 0 & x, y, z 

ϵ ℝ (hybrid between 8 & 18). 

Sets (elements of the set, 

3-tuples, etc.) → System of 

equations (e.g. y=2x) 

(e) The solution to the task is the SLE which is {
2𝑥 − 𝑦 = 0
3𝑥 − 𝑧 = 0

 (8) 

or (
2 −1 0
3 0 −1

|
0
0
) (12). 

Systems of equations, 

matrices, SLEs. 

Table 5-1 - Discourses traversed 

As can be seen in Table 5-1, this routine tapped four different discourses – Properties of 

SLEs, Matrices, List of Equations and Sets and included transitions between them. The 

transitions in the above solution are necessitated by students following familiar object-level 

routines within a discourse and reaching an impasse, or a dead-end, when the object level 
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routine does not continue. Thus, the task necessitates implementing meta-level routines of 

linking to routines and narratives in another discourse.  

5.2.4 Summary of the commognitive analysis of the SLE task 

In this section, a possible solution to the SLE task was presented, and the objects, routines 

and discourses involved in this solution were closely examined. Solutions for this task 

include realizations and narratives from multiple subdiscourses, transitions between these 

discourses and impasses when attempting to solve the task within a single discourse. Thus, 

this task afforded opportunities for practicing meta-rules involved in linear algebra by 

supporting and necessitating cross discourse narratives. 

Importantly, the assumption underlying this task is that students have already been 

introduced to the various subsumed discourses underlying the SLE (full linear algebra) 

discourse, as well as to the equivalence (sameness) of the various realizations. Thus, this task 

is not supposed to introduce students to new meta-rules but rather to support them in enacting 

and rehearsing the saming actions that are critical for the objectification of SLEs. Still, given 

the difficulty of meta-level learning (Sfard, 2007b), it is conceivable that the instructor would 

have an important role in supporting students’ struggle with such tasks. Thus, when students 

reach an impasse, the instructor should guide them to search in other discourses for a possible 

routine.  

5.3 The objects that can be exposed through other tasks - their different 

realizations, and the opportunities for saming 

In the previous two sections the findings for a single task were presented in detail. Tasks 

about other topics were designed for the workshops and these were examined. In this section 

the DMTs for these tasks are presented.   

Similar to the detailed process described above for the construction of the DMT for the SLE 

task, DMTs were constructed for 6 other linear algebra tasks. This process included 

determining the root node, listing realizations, and determining the different subdiscourses 

available for each mathematical object to be used as branches of the DMT. In the following 

sections these are presented along with the DMT constructed.  

In each section first the task is given. Then the choice of root node, that is the mathematical 

object for which the DMT was constructed, is briefly explained. The subdiscourses within 

which the object can be realized are discussed and exemplified. Finally, the DMT constructed 

using these is displayed. The section headings are the names given to the tasks. These names 

are based on the label of the topic as used in standard linear algebra textbooks and syllabi.  

5.3.1 Complex Numbers Task 

 Task Let z
1
, z

2
 ϵ ℂ such that z

1
, z

2
 ≠ 0. 

1) Let 𝑧1 ⋅ 𝑧2 ∈ ℝ. Which of the following statements is always true? Which statement is 

never true? Which statement holds for specific cases of z
1
, z

2
 ϵℂ? 

a) z
1
 = 𝑧

2
 

b) z
1
 = α · z

2 
( α ϵ ℝ ) 

c) 𝑧1
2 ⋅ 𝑧2

2 = 1 

d) Im (z
1
) = 0   
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2) Give a statement for which the following is true: 
𝑧1

𝑧2
∈ 𝑅   ⇔ (statement) 

Node The mathematical object used as the node in this DMT is the complex number, as a 

general element of ℂ.  

Discourses A complex number can be realized in the algebraic discourse, for example 3+4i. 

This discourse includes narratives about the real part of a complex number (Re(3+4i)=3), the 

imaginary part of the complex number (Im(z) = 4) and the modulus of a complex number 

(|3+4i| =√32 + 42). This discourse includes algebraic manipulation of real numbers. 

A complex number can also be realized within the geometric discourse, where the complex 

numbers are realized as a dot on a 2-dimensional axis or on a plane. This discourse includes 

narratives about distance from the origin, geometric characteristics of right-angled triangles 

and quadrants of the plane. 

The polar coordinate system discourse, also known as the trigonometric representation, can 

also be used to realize complex numbers. In this discourse the complex number can be 

represented using degree as 5(cos 53.13 + i sin 53.13) = 5cis (53.13) or using radians as 5cis 

(
π

3
). The narratives in this discourse include trigonometric functions and trigonometric 

identities. 

There is also the real plane discourse, where complex numbers can be realized as a 2-tuple 

such as (3,4). This discourse includes narratives within ℝ2.  

Finally, complex numbers can be realized as roots of a polynomial. In this discourse there are 

narratives pertaining to polynomials, such as the first fundamental theorem of algebra which 

states that any polynomial of degree n has n complex roots (including multiplicities), and 

narratives about finding the roots of polynomials, such as if z is a root of a polynomial with 

real coefficients, then 𝑧 is also a root. 

The complex number object can be realized in five subdiscourses – algebraic, geometric, 

polar, planar, and polynomial. These are the branches of the DMT, shown below. 

DMT 

 

 

Figure 5-3 DMT Complex numbers 
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5.3.2  Matrices Task 

Task Let C be a matrix whose third column is all zero's. Let D be a matrix whose second row 

is all zeros. Examine CD and DC. Do they inherit any characteristics from C and D? That is, 

is the third column all zeros? Is the second row all zeros? 

Node This task discusses properties of the structure of matrices, such as a certain row being 

all zero, and multiplying matrices. Solving the task involves focusing on a matrix with a 

certain property and authoring narratives pertaining to it. A different matrix with another 

property would have the same branches, but the realizations would be different. The 

properties depend on which field is used to construct the matrices, but the properties of the 

field are not the focus of this task. Thus, the mathematical object was considered as a general 

matrix over a general field F. 

Discourses Matrices can be realized visually as a block, where the objects being manipulated 

are a two-dimensional array, such as (
1 0 0
0 1 0
0 0 1

). This is a discourse including narratives 

manipulating the arrays as a single object, for example (
1 0 0
0 1 0
0 0 1

) + (
1 0 0
0 1 0
0 0 1

)  =

 (
2 0 0
0 2 0
0 0 2

). This discourse also includes describing properties of the array, such as the 

matrix is symmetric (graphically, i.e. invariant under reflection with respect to the main 

diagonal) or the matrix is square. Matrices, and their properties, can be realized in this 

discourse using “hand motions”. For example, a drawing with lines in large parenthesis 

realizes a matrix, even though no specific elements are apparent, as in the following image. 

 

Each matrix can also be realized as an array of scalars, where each element in the matrix is a 

scalar and treated as its own object. This discourse includes narratives from within the field 

of scalars, such as the element in the third row and second column is zero (a32=0) or for all i 

and j it holds that Aij=Aji. This subdiscourse includes familiar narratives about scalars, as the 

fields are familiar to the students, however realizing a matrix as an array of scalars is not 

simple.  

A matrix is also an array of n-tuples, that is each row in a mxn matrix is an n-tuple and each 

column is an m-tuple. This discourse includes narratives such as row k is equal to column k 

and the row space of the matrix is equal to Fn.  

Once matrices are mathematical objects they can be realized symbolically and by their 

properties as elements of the set of all matrices. For example, A commutes multiplicatively on 

the left or multiplying by A on the right does not alter any matrix. The symbol A realizes the 

matrix, as in the narrative At=A. This discourse realizes matrices by describing properties of 

them, rather than the internal structure.  

Matrices can be realized in four subdiscourses – visually, arrays of scalars, arrays of tuples, 

and symbolically. These are the branches of the DMT, shown below. 
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DMT 

 

Figure 5-4 DMT Matrix  

5.3.3 Vector Space Task 

Task What is the greatest value of n, such that there exist subspaces 𝑊𝑖 ⊆ ℝ(2×3), 1 ≤𝑖 ≤𝑛, 

such that 𝑊1   ⊊ 𝑊2  ⊊ ⋯ ⊊ 𝑊(𝑛−1)  ⊊  𝑊𝑛? 

Node This task explores subspaces and the relationships between different subspaces of a 

given, real vector space. The scalars being real numbers does not affect the solution, therefore 

the object is not the real subspaces, but a general vector space.  

Discourses A vector space can be realized as a set of elements. This discourse includes 

narratives such as (0,0,0) is in W2 and W1 is a subset of W2. In this discourse the elements are 

realized as n-tuples, that is a sequence of numbers separated by commas. The unique 

properties of vector spaces are not part of the narratives. Although these sets can be infinite 

(when the field is of characteristic zero), the narrative x is an element of W is within this 

discourse. 

Another way in which vector spaces can be realized is as a set of vectors, where the 

relationship between the elements is noted. This discourse includes narratives such as all the 

multiples of (1,0,0) are in the vector space. Vector spaces can be realized in this discourse as 

linear spans, which include narratives such as the basis of the vector space is (1,0,0) or 

manipulation of the basis instead of the entire vector space. 

Finally, as vector spaces are mathematical objects, they can be realized by their properties. 

This discourse includes narratives such as the dimension of the vector space is 2 and the 

vector space is a subspace of a different vector space. 

The object vector space can be realized in three subdiscourses – sets of elements, sets of 

vectors, and by its properties. These are the branches of the DMT, shown below. 
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DMT 

 

Figure 5-5 Vector Space DMT 

5.3.4 Linear Dependence Task 

Task V is a vector space over the field F. If a statement is true, prove it. If a statement is false, 

give a numerical counter example.    

(1) Given the set {u1, u2, u3} is linearly independent and u4 ∈ V, then the set {u1, …, 

u4} is linearly independent. 

(2) Given the set {u1, u2, u3} is linearly dependent and u4 ∈ V, then the set {u1, …, u4} 

is linearly dependent. 

(3) If {u1,…,u6} is a linearly dependent set, then Sp{u1,…,u5} = Sp {u2,…,u6}.  

(4) If {u1,…,u6} is a linearly independent set, then Sp{u1,…,u5} = Sp {u2,…,u6}.   

Node This task includes sets of vectors that are linearly dependent and linearly independent. 

Solving this task includes authoring narratives about these sets. There is no specific set, rather 

it is a general set. The number of elements in the set is not central to the solution, rather the 

relation between the dimension of the vector space and the size of the set is important.  

The notion of linearly independent vectors is logically equivalent to the notion of not linearly 

dependent vectors. These two objects are two faces of the same object and the DMT 

constructed for them is similar and use negations of the same narratives within the 

realizations. Therefore, either can be chosen as nodes and I used linearly independent vectors. 

Discourses A linearly dependent set can be realized as a collection of n-tuples for whom 

there exists a linear combination equaling zero, that is as a collection of vectors. This 

discourse includes narratives about scalars and linear combinations, such as there exist 

scalars α,  β,  γ, not all zero, such that α ⋅ 𝑣1 + β ⋅ 𝑣2 + γ ⋅ 𝑣3 = 0⃗ .  

A linearly dependent set can be realized as a set of n-tuples with properties. This discourse 

can include narratives such as the vectors in the set are multiples of each other and zero is an 

element of the set. 
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Linearly dependent sets can also be realized by their representations as coordinate vectors in 

Fn. This discourse includes reduced echelon matrix representation of these vectors as 

narratives. For example, the row reduced matrix (
1 0 0
0 1 0

) does not have a row of zeros. 

The discourse about vector spaces can also be used to realize a linearly dependent set. For 

example, the narrative (1,2,3) is not an element of the linear span of (1,0,0) and four vectors 

cannot be linearly independent in ℝ3 are within this discourse. 

The mathematical object a linearly independent set can be realized in four subdiscourses – 

scalars, sets of n-tuples, matrices and vectors. These are the branches of the DMT, shown 

below. 

DMT 

 

Figure 5-6 Linearly Independent Vectors DMT 

5.3.5 Linear Transformation Tasks 

The task used for the workshop implemented in the Algebra 1m course was considerably 

modified for the next iteration of the workshops in the Algebra A course, which included a 

lot more theory and finite fields. Thus, both tasks are presented.  

Task (Algebra 1m) T: ℝ3 → ℝ3 is a linear transformation such that T(1,2,3) = (0,0,0) and T is 

not the zero transformation. 

For which values of n ϵ ℕ does there exist such a T so that dim Ker T = n? 

For those values of n give an example of such a T and find a basis of Ker T. 

Task (Algebra A) T: ℤ5
4 → ℤ5

4 is a linear transformation such that T(1,2,3,4) = (0,0,0,0). 

1) For which values of n ϵ ℕ does there exist such a T so that dim Ker T = n? 

For those values of n give an example of such a T and find a basis of Ker T. 



51 
 

2) If, in addition, there exist 3 vectors v1, v2, v3 such that T(v1) = T(v2) = T(v3), which 

values can dim Ker T take? 

3) Construct a T that fulfills the given conditions and also Ker T = Im T. 

4) Construct a T that fulfills the given conditions and also Ker T ∩ Im T = 

sp{(1,2,3,4)}. 

Node These tasks include defining a linear transformation that has certain properties. Solving 

these tasks includes realizing the mathematical object of a linear transformation, thus this is 

the root node of the DMT. 

Discourses A linear transformation is an expansion of a function, thus it can be realized in 

the discourse of functions. This includes narratives about the image of vectors, such as 

T(1,2,3) = (3,3,3), the image of a vector (x,y,z) is (x+y,x+y,x+y) and the linear 

transformation is injective. 

A linear transformation can be realized using vector spaces. A linear transformation can be 

realized by its definition on any basis. The discourse of basis of vector spaces includes 

narratives such as the linear transformation is uniquely determined by defining it on a basis. 

Linear transformations can also be realized by the subspaces associated with them – the 

kernel and the image. Within this discourse the narrative the image of T is the linear span of 

the vector (1,1,1) can be stated. 

A linear transformation can also be realized by its matrix representation according to a basis. 

The discourse of matrices includes narratives such as the linear transformation is invertible 

since the matrix is invertible and the image of the linear transformation is the column space 

of the matrix.  

Linear transformations can also be realized as elements of a vector space, namely 

Hom(V,W). This extremely abstract notion was not included in all the algebra courses, and 

thus was not available to the students in all the workshops. It is not displayed on the DMT.   

Thus, in this course the mathematical object linear transformation can be realized in three 

subdiscourses – functions, vector spaces, and matrices. These are the branches of the DMT, 

shown below. 
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Figure 5-7 DMT Linear transformations 

5.3.6 Diagonalizable Matrix Task 

Task Let A be an n x n complex matrix, 𝐴 ∈ ℂ𝑛×𝑛. 𝐴 = (

𝑎1 𝑎2 . . . 𝑎𝑛

𝑎1 𝑎2 . . . 𝑎𝑛

⋮
𝑎1

⋮
𝑎2

⋱
. . .

⋮
𝑎𝑛

). 

 For what conditions on a1, a2, … an is A not diagonalizable? 

Node This task discusses the mathematical object of a diagonalizable matrix. Yet, solving 

this task contains narratives about the mathematical objects eigenvalues and eigenvectors. 

These two topics are often presented to students together, as they are intertwined. The 

solution of this task demands a conclusion about a matrix and uses narratives about 

eigenvalues to justify these. Thus, the root of the DMT is the diagonalizable matrix, and the 

mathematical object of eigenvalue is a subtree of the main object.  

In all trees there are potential subtrees. For example, the DMT for a complex number 

includes the mathematical object of a real number, which can be mapped by an DMT. The 

real number’s DMT can, in turn, include a subtree mapping a rational number. This process 

will continue, expanding and lengthening the DMT to an unwieldy entity. Thus, the 

underlying assumption included in constructing DMTs is that although every object has a 

subtree, if it is an object that the learners are familiar with, no subtree is mapped for such an 

object. Therefore, the endpoints of DMTs are objects that can be considered as a prerequisite 

(familiar objects and discourse) for learning the new object. The DMT for diagonalizable 

matrices includes the subtree of matrices described above but is considered as a familiar 

discourse and is not mapped here. 

Similarly, based on this assumption, eigenvalues should be considered as familiar, old objects 

within the diagonalizable matrix DMT. Yet, this is not the case. In the courses studied for this 
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project, the two objects were taught together during the last week of the semester. Due to 

time constraints, the students were not able to first objectify eigenvalues and then examine 

diagonalizable matrices. Rather, it was all together. Thus, eigenvalues and eigenvectors were 

not familiar objects to the students and are mapped as a subtree within the main DMT. 

Discourses Diagonalizable matrices can be realized as elements of the vector space Fnxn. This 

discourse includes narratives such as the matrix is similar to a diagonal matrix and 

(
1 0 0
0 2 0
0 0 3

)  𝑖𝑠 𝑎 diagonal matrix. This discourse includes realizing matrices as matrix 

representation of linear transformations. 

The discourse of the vector space Fn can also be used to realize a diagonalizable matrix. For 

example, the narrative the eigenvectors are a basis for the vector space Fn is within this 

discourse. This discourse includes the object of eigenvectors. The discourses for this object 

are the same as for any vectors and are discussed in the task pertaining to vector spaces.  

Diagonalizable matrices can also be realized as an array of numbers and by their scalar 

properties. For example, in this discourse the narrative the eigenvalues are all different can be 

stated and the trace of the matrix is real is also a narrative within this discourse. This 

discourse includes the subtree of eigenvalues, which is a scalar object that is central to 

solving this task, as explained above. 

Eigenvalues can be realized in several discourses. They can be realized in the discourse of 

vectors. For example, there exists a vector v ≠ 0 such that A ⋅ v = λ ⋅ v is a narrative within 

this discourse. Procedures of vectors can be used on the eigenvectors.  

The mathematical object eigenvalue can also be realized as the root of a polynomial. This 

discourse includes narratives such as the algebraic multiplicity of the eigenvalue is the 

multiplicity of the eigenvalue as root of the characteristic polynomial and if λ ∈ ℂ is a root of 

a real characteristic polynomial, then cong(λ) is also a root. This discourse uses properties of 

scalars and polynomials. 

Eigenvalues can also be realized within the discourse of matrices, as they are a property of 

matrices. For example, the narrative 0 is an eigenvalue of all non-invertible matrices is within 

the matrix discourse.  

The mathematical object diagonalizable matrix can be realized in three subdiscourses – 

matrices as vector spaces, vector spaces of n-tuples and by matrices with their scalar 

properties. The mathematical object eigenvalue can be realized in three subdiscourses – 

vectors, polynomials, and matrices. These are the branches of the DMT, shown below. 
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Figure 5-8 DMT Diagonalizable Matrices 

5.4 Summary of chapter 
The DMTs of all the tasks demonstrated that these tasks have the potential for authoring 

multiple realizations in multiple discourses, for constructing links between discourses and for 

transitioning between multiple discourses.  

The commognitive analysis of the SLE task showed how solving this task encouraged these 

transitions. This task includes impasses, where the student has no available routines to 

continue within the discourse. At these nodes of the solution, there were other 

readily available routines in different discourses. There were 

opportunities for bonding between the final step end of a subroutine in one discourse and the 

first step in another discourse. Thus, this task encouraged transitioning between discourses 

and supported saming of realizations. Similar analysis was done on the other tasks and 

showed that such impasses that necessitated traversing between discourses were common in 

all the tasks. That is, these tasks have the potential to encourage explorative participation and 

include both object-level and meta-level learning.  
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6 Constructing DDMTs based on implementations of the tasks in 

linear algebra workshops 
The previous section examined the potential of tasks designed to support explorative 

participation and encourage student learning. The potential of a mathematical task was 

defined as the capacity to provoke discussion, including compelling students to author 

realizations and links and providing the teacher with opportunities for highlighting unfamiliar 

links. Operationally, this potential was determined as the inclusion of multiple realizations 

and the athouring of links between these. As described in the methods section and the 

previous section, DMTs were constructed for six linear algebra tasks to examine the potential 

of these tasks. 

The tasks afforded opportunities for both object-level learning and meta-level learning. At the 

object level, they afforded opportunities for authoring narratives within multiple 

subdiscourses. At the meta-level, they offered opportunities for authoring narratives in the 

coalesced discourse. This section looks at the implementations of these tasks to examine were 

the opportunities for explorative participation taken up and in what ways.  

Explorative participation, as described in the theoretical background, consists of authoring 

object-level narratives in multiple discourses and connecting realizations from within 

separate subdiscourses. These connections are constructed by authoring narratives in the new, 

coalesced discourse. Thus, my goal for mapping the lessons was to examine if there were 

realizations from within different subdiscourses and were connections between these 

subdiscourses authored.    

I mapped the realizations authored during the whole classroom discussion on a Discussion 

Discourse Mapping Tree (DDMT), which is a utilization of the DMT. The construction of the 

DDMTs, based on an actual discussion, includes both a priori and a posteriori components. 

The branches of the DDMT were drawn a priori, using the branches from the DMT. The 

branches are the available subdiscourses within which object-level narratives can be authored 

about this object. The drawing of the realizations on the branches was done a posteriori and 

based on what was mentioned in class. The construction of the DDMT supported mapping 

which subdiscourses were mentioned, which connections between subdiscourses were 

authored and who authored these.  

This section first exemplifies the construction of a DDMT for a whole class discussion in a 

single workshop and then presents DDMTs from other workshops and what can be construed 

from these images. 

6.1 An example of constructing a DDMT based on the recording of a whole class 

discussion in a workshop 

6.1.1 DDMT for Workshop W5 

This section displays the process of constructing a DDMT for workshop W5. The DMT for 

the task discussed in the workshop is in Section 5.3.1.5. This workshop was chosen to 

exemplify the construction process since it represents a typical workshop. It included 

multiple realizations and links, but not all the possible ones. Thus, the mapping described 

below can be considered as the process used for constructing all the DDMTs from the 
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workshops. This workshop took place in the second half of the Winter 2020 semester. The 

students were from the Algebra A course. The discussions were held in Hebrew.  

The workshop was based on the following task:  

Task: T: ℤ5
4 → ℤ5

4 is a linear transformation such that T(1,2,3,4) = (0,0,0,0). 

1) For which values of n ϵ ℕ does there exist such a T so that dim Ker T = n? 

For those values of n give an example of such a T and find a basis of Ker T. 

2) If, in addition, there exist 3 vectors v1, v2, v3 such that T(v1) = T(v2) = T(v3), which 

values can dim Ker T take? 

3) Construct a T that fulfills the given conditions and also Ker T = Im T. 

4) Construct a T that fulfills the given conditions and also Ker T ∩ Im T = 

sp{(1,2,3,4)}. 

The workshop started with 7 minutes of a reminder of the basic theorems and definitions 

pertaining to linear transformations. Some of the definitions were written on the board by me, 

such as the linearity property of the transformation (∀ 𝛼 ∈ 𝐹, ∀𝑢, 𝑣 ∈ 𝑉 it holds that 

𝑇(𝛼𝑢 + 𝑣) =  𝛼𝑇(𝑢) + 𝑇(𝑣)). Some were authored by the students after prompting. For 

example, I asked the students what the image of the zero vector is, and they answered it is the 

zero vector. Another example is that the students dictated to me the second dimension 

theorem (dim Im T + dim Ker T = dim V), which I wrote on the board. Some of the 

properties were in the subdiscourse of functions and some were in the subdiscourse of vector 

spaces. The linearity property can be stated in the subdiscourse of functions and the second 

dimension theorem, which pertains to the dimension of subspaces, uses the subdiscourse of 

vector spaces.  This introduction reminded all the students of narratives in multiple 

subdiscourses. The students were familiar with these narratives and the subdiscourses were 

available to them for solving the tasks. 

After the launch of the task, the students worked on the task in pairs for 15 minutes. This was 

followed by a whole class discussion that was 21 minutes long. The analysis herein focuses 

solely on the whole class discussion part. 

The discussion about the first question of the task was rich and long, therefore the solutions 

to the other questions were only mentioned with minimal discussion. There were seven 

students in the classroom, and they all participated in the discussion. Some talked from their 

seats, and some came to the board to write out examples or to point to examples already 

written. 

The construction of the DDMT commences by deriving its node and its branches from the 

DMT. The realizations drawn on the DMT used to determine these are not used. That is, the 

DDMT starts with an empty, labelled tree. This can be seen in Figure 6-1, below. 

 

Figure 6-1: Blank DDMT for Workshop W5 
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Based on the recording of the whole class discussion, realizations that were mentioned were 

drawn on the appropriate branch and connections between realizations that were mentioned 

were also drawn. Dark boxes and solid lines were authored by students and light boxes and 

broken lines were authored by me, the instructor. The DDMT is below (see Figure 6-2) and is 

followed by a description of the mapping process.  

 

Figure 6-2 - DDMT Workshop W5 

6.1.2 The mapping of Workshop W5 

The discussion started by me asking does there exist a linear transformation such that dim 

Ker T = 0.  This is a realization of T in the subdiscourse of subspaces authored by the 

instructor (me), therefore it was drawn on the subspaces branch of the DDMT in light grey 

and is labelled (1). The students answered “no” and justified their answer by explaining that 

there is a vector in the kernel, since T(1,2,3,4) = (0,0,0,0). This narrative, authored by the 

students, is in the subdiscourse of functions, as it claims that the image of (1,2,3,4) is zero, so 

the box labelled (2), in dark grey, was drawn. The students also connected between these two 

narratives and authored a narrative in the coalesced discourse, that if T(1,2,3,4)=0 then the 

dimension of the subspace, Ker T, is greater than zero. This connection is labelled (I) on the 

DDMT. 

During the small group discussion, I noted that the students had constructed various examples 

for different values of n. Thus, I next asked for someone to give their example for n=1. A 

student volunteered to come to the board and said, “We can define the linear transformation 

by its behavior on the basis” and wrote as column vectors four vectors, which he later 

labelled a1, a2, a3, and a4, on the board. After justifying that {a1, a2, a3, a4} was indeed a basis, 

the student said that we can choose T(1,2,3,4) = (0,0,0,0) to fulfil the condition given in the 
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question. He next explained that in order that dim kerT =1 the only other condition necessary 

is that the image of the other vectors be anything except for 0. He wrote: 

 

Figure 6-3 - Reconstruction of writing on board 1 

This is a realization in the subspace subdiscourse and so box 3 was drawn in dark grey. For 

the sake of this discussion, I call this linear transformation T1. 

I mentioned that the final answer would need to be given in the general case, so the 

realization labelled (4) in the subdiscourse of functions was drawn. I asked if they all know 

how to do that and some students acknowledged this, so a connection was made between 

these two realizations. This was authored by me, the instructor, and so was marked as a 

broken line and is labelled (II) in the DDMT. 

After asking the class what the dimension of the kernel of T1 is, I changed the example on the 

board so that T(a2) = T(a3).  

 

Figure 6-4- Reconstruction of writing on board 2 

I claimed that this transformation, which for this discussion I call T2, also fulfils the student’s 

condition (that the image of all the other three vectors in the basis are not zero) and asked the 

class what the dimension of the kernel of T2 is. Since I authored this realization of a linear 

transformation box (5) was drawn in light grey in the DDMT. The students expressed 

hesitation, so I asked, what is the kernel of T1? A student said the span of (1,2,3,4), and thus 

box (6) in the subspace subdiscourse was drawn. Then I asked what is the kernel of the linear 

transformation T2? A student said, “now its dimension is 2” and so box 7 was drawn.  

A different student then asked, “is what we defined even a linear transformation?” This 

question led to a discussion of the existence and uniqueness of a linear transformation defined 

on the basis. First, one student claimed that the definition of T2 such that T(0,1,0,0) = 

T(0,0,1,0) = (0,1,0,0) contradicts the definition of T2 as a function. The realization (8) in the 

function subdiscourse was drawn. I explained the difference between well-defined and 

injective, and so box (9) was drawn.  

Next, as part of proving that a linear transformation defined on the basis is well defined, a 

student showed that T2(1,2,3,4) + T2(0,1,0,0) = T2((1,2,3,4) + (0,1,0,0)) on the board. This is 
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one of the basic, defining properties of linear transformations and utilizes a realization of 

linear transformation as a function, and so box (10) was drawn. 

Another student said that since for T2 the set is not spanning the vector space, as opposed to 

T1 which does, therefore T2 is not well defined. His explanation of his question and my 

restating of it elicited from other students that T2 is not surjective due to the kernel being not 

zero, and thus box (11) was drawn, and connection (III) was marked in a solid line. I clarified 

that the definition of surjective is that Im T = V and that Im T2 ≠ ℤ5
4, and in the case of a 

linear operator it is sufficient to say that Ker T ≠ {0}. Box (12) was drawn, and line (IV) was 

marked. 

A student suggested to find the general case of the transformation T2 and so the connection 

between the definition on the basis in the subdiscourse of basis was connected by a student to 

the general case in the function subdiscourse, labelled (V). This was written out on the board 

with the students telling me what to write. Therefore, this was considered as a student-

authored link. To conclude this part of the discussion, the theorem of existence and 

uniqueness of a linear transformation defined on a basis was mentioned and described. 

I went back to the definition of T2 and asked the class what is dim Ker T2. There was some 

discussion about the dimension theorem (dim Ker T + dim Im T = dim V) and its corollaries 

if T is an operator. A student asked which two vectors can be in the kernel and another 

student suggested that the vector a2-a3 = (0,1,-1,0) is in the kernel, since T2(a2-a3) = T2(a2) – 

T2(a3) = 0. The student authored the realization T(0,1,-1,0) = T(0,1,0,0)-T(0,0,1,0), which 

was labelled (13). I explained to the class that this is similar to the difference between two 

solutions of a non-homogeneous system of linear equations, which is a solution of the 

connected homogeneous system. Thus, a realization in the matrix subdiscourse was authored, 

labelled (14), and a connection labelled (VI) was noted. I mentioned that the solution of the 

homogenous system is the kernel of the transformation, and thus connection (VII) was made 

between the matrix representation of the homogenous system and the kernel. 

6.1.3 Summary - the mapping of Workshop W5 

To conclude, there are characteristics of the implementation of the task that are discernable 

from the image of the discussion as portrayed on the DDMT. There were seven realizations 

mentioned from within the subdiscourse of functions (boxes 2, 4, 8, 9, 10, 11, and 13). Six 

realizations were mentioned in the subdiscourse of subspaces, including narratives of 

subspaces as sets (boxes 1,6,7, and 12) and narratives of subspaces as vectors (boxes 3 and 

5). Additionally, a narrative from the subdiscourse of matrices was authored (box 14). There 

were multiple realizations authored during the discussion, both by the students and by the 

instructor. There were also links authored during the discussion. Five connections were 

authored between the subdiscourse of functions and the subdiscourse of subspaces, two 

authored by the instructor (links II and IV), and three of them were authored by the students 

(links I, III, and V). One connection was authored between the subdiscourse of functions and 

the subdiscourse of matrices (link VI) and one connection was authored between the 

subdiscourse of subspaces and the subdiscourse of matrices (link VII).  

The class authored realizations in multiple discourses and linked between them, that is they 

participated exploratively in the discussion. The class also practiced procedures from within 

the different subdiscourses and narratives from the coalesced discourse of linear 

transformations were encouraged, supported and authored. That is, there was both object-
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level learning and meta-level learning in this whole classroom discussion. However, it must 

be noted that the learning described here pertains to the class as a whole, and not to individual 

students.   

There were realizations authored by the students about using a basis to define a linear 

transformation, linear dependence and linearity of the transformation. In these narratives the 

students seemed fluent, that is the students were fluent in the subdiscourses. The discussion 

supported their meta-level learning and the adoption of the coalesced discourse. 

Although the DDMT reflects the discussion, there were some other tangential discussions 

that do not show up on the DDMT. These discussions were about different mathematical 

objects than what is mapped on the DDMT. For example, at the beginning of the discussion 

there was a brief discussion if the set {a1 = (1,2,3,4), a2 = (0,1,0,0), a3 = (0,0,1,0), a4 = 

(0,0,0,1)}, suggested by a student, is linearly independent. This discussion was not mapped 

on the DDMT, as the narrative was from a discourse that is not apparent on the DDMT, that 

is the discourse of linearly independent vectors. That discourse implicitly exists underlying 

this DDMT and can be considered as the preceding discourse that the students were expected 

to have adopted. Similarly, there are narratives from within even more basic discourses, such 

as adding scalars or adding vectors, that are not apparent on this DDMT. The choice of which 

narratives to note considers what objects are the focus of the lesson and what objects are 

considered previous knowledge and are already objectified by the students. Thus, in this 

section narratives from within other, previously learned discourses were not mapped onto the 

DDMT.  

6.2 Explorative opportunities in all the workshops 
There were 11 whole class discussions recorded. DDMTs were constructed for these, in a 

similar method to what was described above. The whole class discussions in the various 

workshops included authoring realizations in varying degrees and connecting between these 

realizations. In this section, six DDMTs exemplifying the discussions and the characteristics 

that supported explorative participation made apparent by this mapping are displayed and 

discussed. The use of subdiscourses, how many and which, was examined as authoring 

realizations in multiple discourses is part of explorative participation. I also examined an 

aspect of the agency given to the students, as displayed by who authored the realizations and 

the connections, since this is also an aspect of explorative participation. Finally, explorative 
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participation includes connecting between the realizations, and thus the links drawn on the 

DDMTs were examined. 

6.2.1 Workshop S1, Spring 2019, Complex Numbers, Algebra 1E 

 

Figure 6-5 - DDMT S1 Complex numbers 

Workshop S1 was in the second week of the semester and 14 students attended. The task was 

to prove some claims about complex numbers. The intended goal was to use the multiple 

types of representations and to discuss the connections between them. In general, the 

discussion in this workshop was focused on the metarules of logic and proof, and not on 

complex numbers. The first student who presented her solution to the class on the board 

proved the wrong direction of the claim. That is, she assumed what needed to be proved, and 

proved what was given. She proved z1 = cong(z2) => z1∙ z2 ϵℝ instead of z1∙ z2 ϵℝ => z1 = 

cong(z2). This led me, the instructor, to ask questions about what was given and what can be 

assumed. Similarly, subsequent discussions about the student’s presentations on the board 

focused mainly on logic and proving. This workshop was at the beginning of the semester, so 

the students were not yet familiar with all the meta-rules of logic and proof.  

The discussion included many mathematical ideas and exposed the students to important 

executive meta-rules of logic and proving. However, the discussion did not include any 

opportunities for meta-level learning of the coalesced discourse of complex numbers, as seen 

by the absence of any links drawn on the DDMT. The discussion, in Figure 6-5 above, 

included realizations from within only a single subdiscourse - the algebraic subdiscourse. 

This subdiscourse is the most familiar to the students. It is included in the secondary school 

curriculum and does not use any trigonometric functions. As part of the conclusion of the 
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discussion, I authored one realization in another subdiscourse and connected it to the already 

mentioned realizations, as seen by the single light grey realization in the polar subdiscourse.  

The DDMT, Figure 6-4, shows the single subdiscourse used by the students and the single 

connection, authored by me, to a different subdiscourse. 

6.2.2 Workshop W1, Winter 2020, Complex Numbers, Algebra A  

 

Figure 6-6 DDMT W1 Complex numbers 

There were over 60 students in Workshop W1, which was in the second week of the 

semester. It had the same task as Workshop S1 (Figure 6-5 above) and was held in the next 

semester. Having become cognizant of the importance of the need to actively introduce 

multiple subdiscourses into the discussion and encouraging hints of them in students' talk by 

mapping the first workshop, I attempted to ensure that multiple subdiscourses be mentioned 

in this discussion. I did this in two ways. First, I asked the students how the complex number 

a+ib, in the algebraic subdiscourse, could be represented in another form. The students 

suggested the realization rcis𝜃 in the polar subdiscourse. However, after this, the discussion 

reverted back to the algebraic subdiscourse, possibly since this was the most familiar one to 

the students.  

My next attempt utilized an opportunity provided by a student’s justification for a claim. As 

part of this justification, the statement (2+3i)2 = (2+3i)(2+3i) was authored. I attempted to 

ensure the discussion used the polar subdiscourse by asking how one would calculate 

(2+3i)17. This question stimulated a student to give an answer using de Moivre’s formula 

((rcis𝜃)n = rcis𝑛𝜃), which can only be stated in the polar subdiscourse. Following this, more 

realizations in the polar subdiscourse were authored. 

The discussion in W1, Figure 6-6 above, included realizations from within two 

subdiscourses. Yet, there were only minimal connections authored between the two 

subdiscourses mentioned. After the workshop, I wrote in my teaching journal, “the discussion 

included realizations in lots of discourses” (Journal, 5/11/2019). The DDMT showed that 

although this was so, there were only minimal links. That is, there were minimal narratives in 

the coalesced discourse. The main focus of the discussion in this workshop was also on the 
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general mathematical meta-rules of proving and logic, as in Workshop S1, and not on the 

connections between the subdiscourses.  

The DDMT, Figure 6-5, shows the two subdiscourses that were involved in the discussion 

and minimal connections between them. 

6.2.3 Workshop W2, Winter 2020, Matrices, Algebra A 

 

Figure 6-7  - DDMT Workshop W2 Matrices 

Workshop W2 was in the fourth week of the semester and 15 students attended. The task 

given was to suggest a claim about a product of two matrices that had certain properties and 

to prove it. One matrix had a row of zeros and the other matrix had a column of zeros. The 

goal for the workshop was to lead the discussion to discuss the different realizations of 

matrices and to compare them. The discussion included many realizations and multiple links 

between subdiscourses.  

In this workshop I ensured that multiple discourses were mentioned. This was done in several 

ways. First of all, I ensured that the logic of the claims and the proof was correct. At the start 

of each proof I asked, “what are we proving?” and “what is given?” There was minimal 

discussion about the metarules of logic, and so there was sufficient time for a meaningful 

discussion about matrices.  

Another way I ensured that there were multiple subdiscourses was by actively suggesting that 

the students use other subdiscourses. After a student authored and proved a claim about 

symmetric matrices using the elements of the matrices (DCij = ∑𝐷𝑖𝑘  𝐶𝑘𝑗) I asked the class, 

“how else can we prove it”? This elicited some mumbled suggestions, and no usable 

narratives in other subdiscourses were authored. I next attempted to explicitly ask for a 

narrative in another subdiscourse by saying, “some students used a picture with dots. Can we 

use that?” This justified their use of narratives in the subdiscourse of visual descriptions. 

Following this, a student presented a proof on the board using a picture of an array of 

numbers. This was followed by a discussion if this type of proof is considered acceptable, i.e. 
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would such a proof receive points on an exam. This discussion gave validity to other types of 

proofs. Following this, the students volunteered proofs of various types using narratives from 

multiple discourses, as seen on the DDMT (Figure 6-7).  

Once the students authored multiple realizations from within multiple subdiscourses, the 

discussion could be focused on discussing the connections between these realizations. After 

multiple types of proofs were presented, I started a discussion by asking, “which type of 

proof is best?” This led to comparing and contrasting the different types of proofs and 

deliberating which type of proof is suited to what type of task. This included multiple 

narratives in the coalesced discourse, as comparisons between narratives in the subdiscourses 

were made. The multiple connections apparent on the DDMT were enabled by the existence 

of many realizations in multiple discourses, without which the discussion would have been 

pointless. 

The discussion about what is considered an acceptable proof included many narratives in the 

new coalesced discourse. Yet, it was also about the metarules of proving and what is 

considered an acceptable proof. The executive metarules of proving still needed discussion, 

but in this case the discussion was not instead of a discussion about the topic being discussed. 

Thus, the discussion about the metarules of proving was harnessed to support authoring 

narratives in the new coalesced discourse.  

The DDMT, Figure 6-7, shows multiple subdiscourses and numerous links. The realizations 

were mainly authored by students, and the links were authored both by the students and by 

me. 
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6.2.4 Workshop W4, Winter 2020, Linear Independence, Algebra A 

 

 

 

 

 

 

 

 

 

 

Figure 6-8 – DDMT Workshop W4 Linear Independence 

Workshop W4 was held during the eighth week of the semester with 24 students on the topic 

of linear independence. The task asked to either prove claims or to give a counter example for 

these claims. The students were familiar with the narratives in the subdiscourses and were 

comfortable authoring narratives in the coalesced discourse.  

The students’ familiarity with the different realizations of linearly independent vectors could 

be due to the timing of the workshop. Due to technical issues, the workshop was held later 

than planned in the syllabus, and the students had practiced using these narratives. The 

students used the different discourses interchangeably and the connections between the 

discourses were obvious to the students. For example, a student stated “they (the vectors) are 

linearly independent since the matrix (whose rows are representatives of the vectors) is 

reduced”. The first half of this narrative is from within the subdiscourse of vectors and the 

second half of the narrative is from within the subdiscourse of matrices. Thus, the narrative 

connects between two subdiscourses and is in the coalesced discourse of linearly dependent 

vectors. The connections were elicited from the students after I insisted on their justifying 

narratives by asking, “how do you know that?” and “Is that the definition of linear 

independence?” The students’ familiarity with the various realizations allowed them to author 

all the connections seen on the DDMT, Figure 6-8, but they did not author these links without 

my asking for them. 

The students seemed most familiar with the subdiscourse of matrices. They mostly justified 

their claims pertaining to linear dependence using narratives about echelon reduced matrices. 

Students stated that the matrix is reduced and did not expand their claims, as this was deemed 

by them sufficient proof. In contrast, statements using scalars or linear combinations to 

justify linear independence had continuations such as “then the matrix is reduced”. That is, 

the students associated linear independence with realizations in the subdiscourse of matrices. 

This subdiscourse does not include any of the formal definitions of linear independence. It 

does include a very well-defined procedure for determining linear independence. The use of 

the matrix subdiscourse in this manner was also apparent in the other workshop held on linear 

dependence in the Spring semester.  



66 
 

To conclude, the DDMT, Figure 6-8, shows realizations in multiple subdiscourse with links 

all authored by the students.  

6.2.5 Workshop W5, Winter 2020, Linear Transformations, Algebra A 

 

 

Figure 6-9 – DDMT Workshop W5 Linear transformations 

Workshop W5 was in the eleventh week of the semester and 7 students attended. The 

construction of this DDMT was presented in the first half of this section. The discussion 

focused on the task of constructing linear transformations with certain properties. The main 

goal of this task was to demonstrate the advantages of exploring properties of linear 

transformations by using bases to define the transformation. 

During the discussion, initially the students authored narratives from within only a single 

discourse, that of functions. This could be seen, for example, in the statement “it’s injective” 

(pertaining to the realization of the linear transformation as a function) being sufficient for 

the students and not needing any explanation. In contrast, for the equivalent statement “the 

dimension of the kernel is greater than zero” the students demanded explanation and 

connected it to the transformation being injective. 

In the discussion, I attempted to support and encourage the students’ use of the subdiscourse 

of vector spaces, since it was the newest discourse for them. For example, defining linear 

transformations on bases (that is, in the discourse of vector spaces) is a more efficient method 

of exploring their properties. However, the students did this only after being prompted by me. 

During the small group period, I noted that the students were attempting to explore the 

properties of linear transformations they had constructed randomly, mainly by relying on the 

discourse of functions. That is, they gave the general case of the transformation, for example, 

T(x,y,z,w) = (x-y, x-y, x-y, x-y), and then attempted to examine if this transformation 

fulfilled the properties required by the question. To assist them in linking to the other 

discourses, I first asked leading questions, such as, “Could you define the linear 

transformation differently?” Sometimes, I explicitly mentioned the alternative discourse, such 
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as when I asked, “what defines a vector space?” This sufficed for some students to then turn 

to using bases, yet others still did not. In those cases, I explicitly suggested moving to the 

discourse of vector space, by suggesting that they use a basis to define the transformation. 

My monitoring work in the small groups supported the use of both discourses (functions and 

vector spaces) in the whole class discussion, since the students had all authored narratives in 

both discourses while working in groups. 

The DDMT also reveals the neglect of the discourse in matrices in this discussion. Although 

one realization in this subdiscourse was authored and the connection to the other discourses 

was mentioned, there was no meaningful discussion within this discourse. The matrix 

realization and connection to a realization in the function subdiscourse and to a realization in 

the subspace discourse were authored by me, and the students did not continue using any 

matrix realizations in their own justifications. The subdiscourse that represents linear 

transformations as matrices was introduced in the lectures later. It is thus possible that, 

although students were already quite familiar with the discourse of matrices, they were not 

familiar with them as realizations of linear transformations.  

To conclude, the DDMT in Figure 6-9 shows that students authored narratives from within 

two discourses – the discourse on functions and the discourse on vector spaces.   

The DDMT also shows that although I actively tried to introduce the subdiscourse of matrix 

representation, it was not taken up by the students. 

6.2.6 Workshop W6, Winter 2020, Diagonalizable Matrices, Algebra A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-10 – DDMT Workshop W6 Diagonalizable matrices 

Workshop W6 was in the last week of the semester and 25 students came. The task given was 

to give conditions on parameters such that a matrix, whose elements were these parameters, 
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would be diagonalizable. This workshop was held during the last week of the semester, when 

the topics of eigenvalues and diagonalizable matrices are taught. The intended focus of the 

discussion was diagonalizable matrices. Therefore, the object chosen as the main node of the 

DMT and the DDMT was a diagonalizable matrix. Discussing this object, at that point of the 

course included narratives in the subdiscourses of matrices, similarity of matrices, vector 

spaces and scalars. For example, the narrative “there exists a basis of eigenvectors for the 

vector space Fn” is from within the subdiscourse of vector spaces Fn. The narrative “there 

exists an invertible matrix P and a diagonal matrix D such that D = P-1AP” is from within the 

subdiscourse of the vector spaces Fnxn. These narratives use eigenvalues and eigenvectors, but 

as an underlying discourse, as discussed when the DMT was presented in Section 5.3.6.  

At the time of the workshop, most of the students had only been in lectures, and not in 

tutorials, about eigenvalues and diagonalizable matrices. None of them had done homework 

problems on either of these. The students were not sufficiently comfortable with the 

narratives about eigenvalues, and they needed support to author narratives within the 

subdiscourse of eigenvalues. The discussion was not on the intended object – diagonalizable 

matrices. It was about eigenvalues, an object which is part of a subsumed discourse, and is 

mapped on a subtree of the main tree. The discourse of diagonalizable matrices includes 

object-level narratives that are meta-level narratives in the eigenvalue discourse. For 

example, the narrative all the roots of the characteristic polynomial are of multiplicity 1, 

therefore the matrix has eigenvalues with algebraic multiplicity 1. This narrative is in the 

coalesced discourse of eigenvalues, as it is constructed from a narrative in the subdiscourse of 

polynomials and from a narrative from within the subdiscourse of matrices. This same 

narrative is an object-level narrative within the subdiscourse of the scalar properties of 

diagonalizable matrices. That is, the discussion focused on object-level narratives from 

within a subdiscourse, instead of on the meta-level narratives from the coalesced discourse of 

diagonalizable matrices. The scalar properties subdiscourse includes procedures that are 

familiar to the students, such as finding roots of a polynomial. This could be the reason the 

discussion was focused on that subdiscourse, and not on the other two available 

subdiscourses for diagonalizable matrices. 

The DDMT, Figure 6-9, shows that the discussion included realizations from within two 

subdiscourses on the main tree – the subdiscourse of vector spaces Fnxn and the subdiscourse 

of scalars and polynomials. In addition, three subdiscourses were used on the subtree of 

eigenvalues – the subdiscourse of vectors, the subdiscourse of scalars and polynomials and 

the subdiscourse of matrices. In the main tree there is only one connection, authored by me. 

In the subtree of eigenvalues there are multiple connections also authored by me. The 

students were not familiar with the narratives from within the subdiscourses, and the small 

number of links authored in the discussion were authored by me. 

The DDMT for the other workshop on diagonalizable matrices, which was given in the spring 

semester, Workshop S5, showed a similar picture. That is, most of the realizations and 

connections were in the subtree about eigenvalues, and not about diagonalizable matrices, 

and the links were mostly authored by me. 

The DDMT showed that when the students were not sufficiently familiar with the underlying 

mathematical objects, the discussion turned to the underlying objects. The discussion 
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provided opportunities for narratives in a coalesced discourse, however the discourse was not 

the expected one. 

6.3 Summary of the DDMT analysis 
The 6 DDMTs shown above exemplify the DDMTs of all 11 workshops. In most cases, the 

implementation of the tasks included numerous opportunities for authoring realizations in 

multiple discourses and for authoring connections between these realizations. That is, there 

were opportunities for the students to participate exploratively. Additionally, there were 

opportunities for the students to author narratives in the new, coalesced discourse which 

supported meta-level learning. I now turn to some general observations about the workshops 

that resulted from the DDMT analysis. 

In most of the DDMTs there is a single branch that is more densely filled than the others or 

most links lead to a single branch. This shows that from within the discourses available for 

each topic, there was usually one discourse that was more dominant in the discussion.  Thus, 

students explained their ideas and justified their claims by linking to narratives in this 

discourse and relied on this discourse as the base of their narratives. In some cases, this 

dominant discourse was more familiar to the students. For example, in the linear 

transformations workshop, Workshop W5 (Figure 6-8), the students justified claims with 

narratives from within the functions discourse, probably since it was familiar to them from 

secondary school and from their calculus courses. In other cases, the dominant discourse had 

clear procedures. For example, in the workshop on linear dependence, Workshop W4 (Figure 

6-7), the students’ justifications about linear dependence were mostly in the discourse of 

matrices, where reducing to echelon form was a well-rehearsed procedure familiar to the 

students from lectures, tutorials and their homework. The students clung to the dominant 

subdiscourse and to familiar procedure within it, and the use of other subdiscourses had to be 

encouraged actively.  

In the discussions that had more student authored links there were also more realizations 

authored by the students. In those discussions, the students were familiar with the narratives 

within the discourse, and thus the discussion could be focused more on linking between the 

discourses. For example, in the workshop on matrices, Workshop W2 (Figure 6-6) once the 

students authored multiple realizations from within multiple discourses, the discussion could 

be focused on discussing the connections between these realizations. Conversely, in the 

workshop about diagonalizable matrices, Workshop W6 (Figure 6-9), where the students 

were not familiar with an object from within the discourses, the small number of links 

authored in the discussion were authored by me. The discussion in that case was focused on 

the narratives from within the subdiscourses. Thus, construction of links between 

subdiscourses were dependent on the familiarity of the students with the narratives within the 

subdiscourses.  

The DDMT analysis also highlighted how the instructor provided opportunities for 

explorative participation during the discussion. First, the focus of the discussion was guided 

by the instructor’s questions. When the students were not familiar with general mathematical 

meta-level rules, I changed the focus of the discussion to the missing meta-rules. This was 

seen, for example, in the workshop about complex numbers, Workshop S1 (Figure 6-4), 

where the students were not familiar with the metarules of logic and proof. In those 

discussions, the focus was on these metarules and not on linking between the different 
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discourses of complex numbers. Similarly, when the students were not familiar with the 

object-level narratives of a discourse, the discussion was focused on the narratives and 

connections within the discourse. This was the case in the workshops about diagonalizable 

matrices, Workshop W6 (Figure 6-9), where the discussion was mostly focused on the 

underlying discourses of eigenvalues and not on the discourse of diagonalizable matrices. In 

discourses that students were sufficiently familiar with, focusing the discussion afforded the 

students opportunities for explorative participation in the new discourse.  

The instructor also provided opportunities for explorative participation by ensuring that the 

discussion included multiple discourses. In some of the workshops the students authored 

narratives from within only a single discourse. Other discourses were introduced by me 

through authoring narratives from within these discourses and by implicitly introducing other 

discourses through questions. For example, initially in the workshop about matrices, 

Workshop W2 (Figure 6-6), the students authored narratives from within the discourse of 

scalars and the general element of matrices. I asked the class questions in an attempt to elicit 

realizations in other discourses and I also explicitly requested a realization in the visual array 

of numbers discourse. Thus, this workshop included multiple discourses, and the opportunity 

for explorative participation was afforded to the students. The multiple subdiscourses 

included in the discussion also afforded opportunities for linking between these 

subdiscourses, which is an aspect of explorative participation and supports meta-level 

learning. 

When examining the DDMTs it becomes apparent that, mostly, many of the links between 

discourses were authored by me, the instructor. In places where students authored links on 

their own, these were usually elicited by leading questions from me, asking for justifications 

such as “how do you know?” and “is it always true?” Thus, the instructor’s contributions and 

prompts  can be crucial in connecting between multiple discourses, which is an integral part 

of explorative participation and meta-level learning.  
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7 Learning processes involved in a dyadic mathematical discussion 

without the support of an expert 
The linear algebra workshops are constructed of mathematical tasks, instructor actions and 

student involvement.  In the first section, I examined what potential the tasks afford for 

learning linear algebra. In the next section, I analyzed the whole class discussions and 

examined to what extent opportunities for meta-level learning were taken up. I examined in 

what ways meta-level learning was supported by the workshops, and how the instructor 

encouraged this. Yet the main part of students’ independent exploration and struggle with the 

tasks took place in the collaborative learning phase of the workshops. Additionally, the 

recorded discussions between the students in the small groups could better expose their 

individual discourse than the analysis of multiple participants’ discussions. Thus, I analyzed 

the discourse involved in the students’ collaborative interactions in the small group 

discussions to examine the learning processes involved in a collaborative learning episode 

without the support of an expert. 

This section utilizes a commognitive discourse analysis of dyadic interactions to examine 

collaborative learning in small groups and the processes involved. This chapter first presents 

an overview of the workshop and then examines the learning processes of a seemingly 

successful, egalitarian interaction by examining how a pair of students’ routines changed 

during such an interaction. The pattern of interpersonal communication is next explored, as 

ineffective communication can hinder collaborative learning. Next, the objects and object 

related metarules involved in the discussion are analyzed to examine how these shaped the 

discussion. Finally, the interaction between a second pair of students is presented. 

7.1 The linear dependence workshop and the task situation 
The discussion between the students was in the context of a workshop, the details of which, 

obviously, impacted the discussion. These are presented in this section as a background and 

as the context of the students’ discussions. The two episodes are from different semesters, yet 

they both are from workshops that dealt with the topic of linear dependence. All the 

workshops began with a reminder of the basic definitions and theorems that were presented in 

lectures and tutorials. The basic definition of linear dependence was written on the board in 

the appropriate language, and it was on the board during the students’ discussions that are 

analyzed in this section.  

The definition written on the board: 

V is a vector space over F. The set {v1,…,vn} ⸦ V is linearly dependent over F if 

there exist α1,…αn ϵ F, not all zero, such that Σαivi = 0. Otherwise, the set is linearly 

independent. 

After the introduction, the students were presented a task printed on a paper to solve in small 

groups of two or three students. The task given to the students included four assertations to 

determine if they were true or false. In the Spring semester the instructions on the worksheet, 

which was in English, stated: 

V is a vector space over the field F. Are the following statements true or false?  

If a statement is true, prove it.  

If a statement is false, give a numerical counter example. 
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In the following semester, based on what occurred in the Spring semester, the worksheet was 

modified, and the following line was added to the instructions: 

If a statement is sometimes true, give an example for which it holds and an example 

for which it does not hold. 

The four assertations, in both semesters, were: 

1. {u1, u2, u3}⊆  𝑉 is a linearly independent set and u4 ∈ 𝑉, then the set {u1, u2, u3, u4} is 

linearly independent.  

2. {u1, u2, u3}⊆  𝑉 is a linearly dependent set and u4 ∈ 𝑉, then the set {u1, u2, u3, u4} is 

linearly dependent.  

3. {u1, u2,…, u6}⊆  𝑉 is a linearly dependent set, then Span{u1, u2,…, u5} = Span{u2, 

u3,…, u6}. 

4. {u1, u2,…, u6}⊆  𝑉 is a linearly independent set, then Span{u1, u2,…, u5} = Span{u2, 

u3,…, u6}. 

The analysis presented in the next sections examines the students’ discussion of the proofs of 

the assertations. The two pairs of students, from different semesters, worked on the same 

task. Assertation 2, from the above task, always holds and can be proved in many ways. It 

can be proved succinctly by using the theorem that states that a set including a linearly 

dependent set is linearly dependent. Thus, the set {u1, u2, u3, u4}, which includes the linearly 

dependent set {u1, u2, u3}, is linearly dependent. This proof, although efficient, does not give 

any intuition and requires familiarity with that specific theorem. A more detailed proof using 

only the basic definition of linear dependence starts with the given that {u1, u2, u3} is a 

linearly dependent set. Thus, according to the definition of linear dependence, there exist 

scalars, 𝛼, 𝛽, 𝛾𝜖ℝ, not all zero, such that  𝛼 ∙ 𝑢1 +  𝛽 ∙ 𝑢2 +  𝛾 ∙ 𝑢3 = 0⃗ . Since 0 ∙  𝑢4  = 0⃗ , it 

also holds that 𝛼 ∙ 𝑢1 +  𝛽 ∙ 𝑢2 +  𝛾 ∙ 𝑢3  +  0 ∙  𝑢4 = 0⃗ . That is, there exists a linear 

combination of the four vectors whose scalars are not all zero, and the set, {u1, u2, u3, u4}, is 

linearly dependent. 

7.2 Hadar and Yaniv – an egalitarian pair with a seemingly successful collaborative 

learning session 
Hadar and Yaniv (pseudonyms) were students in the Algebra A course in the Winter 2020 

semester. They chose to participate in almost all the offered workshops. They were both first 

semester students studying towards a degree in computer science. They were sitting near each 

other when they were asked to work in small groups, and so they worked together. They did 

not have any prior acquaintance with each other. 

As described more fully in the methods section, a preliminary analysis of all the recordings 

yielded Hadar and Yaniv’s interaction as potentially illuminating. The two students both 

authored mathematical narratives, they both questioned the other’s claims and they both 

seemingly advanced in some aspects of solving the task. Moreover, the initial observations 

revealed that Hadar and Yaniv explicitly disagreed at the beginning of their interaction and 

later advanced to a collaboratively constructed narrative, which I assessed as canonical. Thus, 

the pair’s narratives seemingly advanced through learning during their interaction. The 

processes of this seemingly productive, joint interaction could shed light on learning 
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processes in a successful, collaborative interaction. Therefore, the dyadic interaction between 

Hadar and Yaniv was analyzed in depth.  

7.3 The dyadic mathematical discussion  
Altogether, Hadar and Yaniv worked in a pair for 10 minutes. First, they quickly solved the 

first task by giving an example for which the first assertation does not hold and an example 

for which it does hold.  

1) True or false: {u1, u2, u3}⊆  𝑉 is a linearly independent set and u4∈ 𝑉, then the set 

{u1, u2, u3, u4} is linearly independent. 

Hadar suggested they use ℝ4 and the linearly independent set {(1,0,0,0), (0,1,0,0), (0,0,1,0)} 

as an example of the set with three elements. Then, the pair discussed if an “abstract answer” 

would be acceptable or do they need to use actual numbers. Hadar decided they need to use 

actual numbers and suggested a vector, “we take zero in the last place then… and something 

else and then linear independence”. The example she gave for a linearly independent set, 

when the assertation holds, was {(1,0,0,0), (0,1,0,0), (0,0,1,0), (5,0,0,2)}. The pair did not 

explicitly state an example for when the assertation does not hold, but it was clear they 

considered it as possible. For this possibility Hadar described a vector for which the “last 

place” has a zero. This implied that such a set is a simple and obvious example of an instance 

where a vector added to the first set yields a set with four vectors, that is a linearly dependent 

set. For example, the set {(1,0,0,0), (0,1,0,0), (0,0,1,0), (5,0,0,0)}.  

The pair next turned to the second assertation, on which most of the rest of the interaction 

was spent. There they disagreed. The assertation was: 

2) True or false: {u1, u2, u3}⊆  𝑉 is a linearly dependent set and u4∈ 𝑉, then the set 

{u1, u2, u3, u4} is linearly dependent. 

7.3.1 Task situation, initial routines and co-constructed final chain of narratives 

The full transcript of the pair’s discussion of this assertation is in Appendix C1, Section 

10.3.1. This section brings excerpts of the transcript when the exact formulation and words 

are important for the analysis, otherwise a synopsis of what happened is provided. The pair’s 

discussion  started with the following excerpt. 

27  Yaniv: Yes. It (the assertation) is definitely true. 

28 Hadar:  A linearly dependent set, u belongs to V, all these together ({u1, u2, u3, u4}) 
are linearly dependent…Are you sure it’s (the assertation) true? 

29 Yaniv:  If it ({u1, u2, u3}) is already linearly dependent, and we add another vector, 
this subset ({u1, u2, u3}) is still linearly dependent. 

From the beginning of their work on this assertation, the students had different tasks. Yaniv’s 

task was to prove that the set {u1, u2, u3, u4} is linearly dependent. He claimed that the 

assertation is true [27], that is the set {u1, u2, u3, u4} is linearly dependent and he gave a 

justification for his claim [29]. This justification hinted at the procedure he used to determine 

if a set is linearly dependent. This procedure used a theorem proved in the lecture - that a set 

including a linearly dependent subset is a linearly dependent set. Thus, Yaniv’s initial routine 

was using the procedure of finding a linear dependent subset to solve the task of proving that 

the set is linearly dependent.  

In contrast to Yaniv, Hadar’s initial task was to show the assertation was false. She attempted 

to do so by proving that there exists a vector u4 such that the set {u1, u2, u3, u4} is linearly 
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independent when the set {u1, u2, u3} is linearly dependent. To do this, Hadar suggested the 

set {(1,0,0,0), (2,0,0,0), (3,0,0,0), (0,1,0,0)} as a counter example to the assertation. To justify 

her claim, Hadar used an idiosyncratic procedure, the details of which will be described later 

in this section, where she explored the status of each vector in the set, determining whether it 

was "linearly dependent" or not. Hadar’s initial routine was to use her idiosyncratic procedure 

to solve the task of suggesting a counter example. 

Hadar and Yaniv’s final co-constructed proof of the assertation differed from each of the 

individually authored proofs. Moreover, the final chain of narratives included pieces of both 

initial narratives and new narratives that they both agreed to. The process of co-constructing a 

proof started with Hadar claiming that there was a way to construct a counter example to the 

assertation: 

38 Hadar:  The 3 (vectors) are (linearly dependent). But the fourth isn’t. So, the entire 
set is linearly independent 

39  Yaniv: Why? 

40 Hadar:  Because…Because it’s possible (to construct such a set). You can bring 
u1=(1,0,0,0) ; u2=(2,0,0,0); u3=(3,0,0,0); u4=(0,1,0,0) [writing this 
example as she talked] 

41 Yaniv:  Then it ({u1,u2,u3,u4}) is still linearly dependent.  

42     Hadar:  How is it linearly dependent?!  

43  Yaniv: No, it (the vector) isn’t – but the set altogether is. 

44 Hadar:  Why? If you find scalars, that not all of them are zero…?  

45 Yaniv:  That means that it is linearly dependent 

46 Hadar:  And this (the linear combination) won’t be equal to zero, because this 
(u4), you cannot neutralize if you don’t put a zero for him  

47 Yaniv:  Yes. But it doesn’t matter if it (the scalar multiplying u4) will be zero, if 
all the rest uh…if there is one  

This excerpt displays Hadar’s idiosyncratic procedure for determining if a set is linearly 

independent. In [38] she hints that, for her, linear independence is a property of single vectors 

(“the fourth isn’t (linearly dependent)”). Hadar’s procedure involves examining the status of 

each vector in the set, and if at least one vector is linearly independent then she concludes 

that the set is linearly independent.  Her procedure for examining the "linear dependence” of 

each vector is further revealed in her statement, “this (the vector (0,1,0,0)), you cannot cancel 

out if you don’t put a zero for it” [46]. This procedure examined whether the scalar used to 

"cancel out" the vector (0,1,0,0) is 0, and if so, determined that the vector (0,1,0,0) is a 

“linearly independent” vector.  

In response to Hadar’s suggestions, Yaniv continued to insist that the set she was suggesting 

was still linearly dependent [47]. However, he did not object to Hadar’s procedure of 

“canceling out” vectors by checking which scalars “cancel them out”. Following some more 

discussion, where Yaniv convinced Hadar that her procedure could still lead to linearly 

dependent sets, Hadar backed up from her original suggestion and instead used her procedure 

of "canceling out” vectors to prove Yaniv’s claims. 

78  Hadar: Then…if we have all sorts in the set, and we put for all of them zero (we 
put scalars that would nullify them), but for the zero vector we put 3… 
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79 Yaniv:  That’s it. Exactly.  

80 Hadar:  Then the set becomes? 

81 Yaniv:  Linearly dependent. 

82 Hadar:  Dependent. 

83 Yaniv:  Yes. 

84 Hadar:  OK. That’s the idea. The idea…exactly the conclusion at the end. 

After this discussion, Hadar changed her narrative to align with Yaniv’s (canonical) narrative. 

She said, “Then wait a second…then…Wow! It’s hard to realize this. That it ({(1,0,0,0), 

(2,0,0,0), (3,0,0,0), (0,1,0,0)}) will always be dependent…We are saying it’s (assertation 

2) always true” [86]. Yaniv agreed and suggested that they formalize their proof, “It’s true. 

We need to prove it” [87]. Now, their tasks of formalizing the proof that the assertation is 

always true aligned and they concentrated on constructing this formal proof. Hadar seemed to 

be a full participant in the authoring of this formal proof. She started by stating, “We can 

do…if we said all these have an alpha 1, alpha 2” [94] and writing on the worksheet. She then 

clarified this and used terminology conforming to the language used in formal definitions – 

“alpha1” and “that is”. 

100 Hadar:  That is, there exist scalars such that the sum of this set ({(1,0,0,0), 
(2,0,0,0), (3,0,0,0)}) will be equal to zero, even if they (all the scalars) 
are not equal to zero. 

101 Yaniv:  Exactly. 

102 Hadar:  And then if we add another vector, we can multiply it (the additional 
vector) by zero (and the sum of all vectors will still remain zero). 

7.3.2 The changes in the pair’s routines during this interaction 

Yaniv’s initial routine was canonical and would probably have been deemed acceptable and 

sufficient by an expert mathematician. After all, his task aligned with the canonical solution 

and he used an appropriate procedure from a theorem in an appropriate place. However, when 

looked at more closely, Yaniv’s narratives around this routine were relatively thin. He did not 

justify why this was an appropriate theorem or why it is true, he just repeated the theorem as 

a justification. In answer to Hadar’s question, “are you sure?” [28], he answered, “we add 

another vector, this subset is still linearly dependent” [29]. Hadar tried to convince Yaniv 

that there can be a counter example and he refuted her claim by restating the theorem, “If we 

add, doesn’t matter what we add…these 3 vectors will still be dependent” [37]. This was also 

his answer to Hadar’s counterexample. He said, “Then it is still linearly dependent” [41], 

without any details or justifications. Thus, Yaniv did not connect the theorem he used to the 

definition of linear dependence displayed on the board, nor did he suggest any other methods 

of solving this task in response to Hadar’s questions. Hadar continued to question Yaniv, 

“How is it linearly dependent?!” [42]. She also suggested using the definition, “Why? If you 

find scalars, that not all of them are zero…?” [44].  Following this, Yaniv attempted to 

connect his narratives to the definition, which uses scalars, “But it doesn’t matter if it will be 

zero, if all the rest …” [47].  Hadar’s questioning of Yaniv’s initial individual routine 

compelled him to bond his canonical routine to the definition familiar to them both by 

clarifying and elaborating his original narratives. 
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Concerning Hadar, her original routine was non-canonical. During the interaction with Yaniv, 

she changed her task to align with Yaniv’s canonical task. Additionally, she modified her 

procedure. Her original procedure included cancelling out vectors by multiplying by zero. 

Her modified procedure acknowledged the possibility of non-zero scalars. She also reported 

comprehension after this interaction, “OK. That’s the idea.” [84] and expressed awareness of 

the change she made to her own narratives “Wow! It’s hard to realize this.” [86]. 

7.3.3 Did Hadar’s routines really change? Examining her performance on the next task 

In the above-described transcript, Hadar ultimately agreed that the set {(1,0,0,0), (2,0,0,0), 

(3,0,0,0), (0,1,0,0)} is a linearly dependent set. This may indicate that she learned something 

new, in the sense that her routines and narratives changed to align more with canonical ones. 

However, in the pair’s discussion of the next assertation, it became evident that the situation 

was more complex. There, Hadar still used her previous routine, which explored the status of 

each vector separately. Not only that, but she also reverted to stating that the set {(1,0,0,0), 

(2,0,0,0), (3,0,0,0), (0,1,0,0)} is a linearly independent set. 

The context of this surprising turn of events was the pair’s attempts to prove the next 

assertation: 

3) {u1, u2,…, u6}⊆  𝑉 is a linearly dependent set, then Span{u1, u2,…, u5} = Span{u2, 

u3,…, u6}. 

Hadar began their discussion by suggesting that this was true, since “u1 can be expressed as a 

combination of u2 through u6, so we can take no notice of it”. Yaniv questioned this by asking 

if maybe u1 was not “the vector that can be ignored”. Hadar answered, “Does there exist such 

a vector? If the set is linearly dependent … can’t each vector be expressed as a linear 

combination of the others?”  Again, we see Hadar examining properties of single vectors (being 

expressed as a linear combination of others) when the property given in the assertation 

pertained to the set {u1, u2,…, u6}. 

After some discussion about this between Hadar and Yaniv I came to monitor their group. 

Hadar asked me, “We are wondering about how a vector can be left out of a linearly dependent 

set. Our question is - is it any of the vectors?” I answered, “not necessarily the first or the last,” 

and then suggested they try to construct a concrete example of such a set and explore this. After 

I left, Yaniv suggested they use the set {(1,0,0,0), (2,0,0,0), (3,0,0,0), (0,1,0,0)}, which they 

had discussed for the previous assertation, and pointed to it written on their worksheet. Hadar’s 

reaction to this suggestion is in the following excerpt. 

220 Hadar:  No. but that (the set (1,0,0,0), (2,0,0,0), (3,0,0,0), (0,1,0,0)}) is not 
dependent. 

221 Yaniv:  Yes. It is a dependent set. 

222 Hadar:  Only the first three (vectors) are (linearly dependent). 

223 Yaniv:  No, all together they are dependent. 

Hadar’s claim in [220] is quite surprising, given that she had just authored the opposite 

narrative during the pair’s discussion of assertation 2. Additionally, her justification of this 

claim in [222] still uses her initial idiosyncratic procedure, authored before the discussion 

with Yaniv. The above lines show that, at least for Hadar, the discussion in pairs was not 

productive for changing her idiosyncratic ways of treating linear dependence.  
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The collaborative learning episode did not advance Hadar’s learning. Studies have suggested 

that social interactions and ineffectual communication can hinder collaborative learning 

(Ben-Zvi & Sfard, 2007; Sfard & Kieran, 2001).  Thus, next I turn to examine the possibility 

that Hadar’s lack of advancement was due to ineffectual communication, as suggested by 

these studies. 

7.4 Pattern of Interpersonal Communication 
To understand whether the problems in advancing Hadar’s discourse were due to ineffective 

interpersonal communication, I examined the pair’s mutual engagement through their use of 

the different channels of communication available. These were analyzed by first segmenting 

the transcript of their discussion about the task into mathematical narratives. This 

segmentation allowed the examination of how each pair listened to each other’s mathematical 

ideas - if they were attending to the mathematical content of each other’s narratives and to 

what extent they were contributing to the discussion.  

 The channels of communication between Hadar and Yaniv were labelled and colored 

according to the following table.  

Private 

Interpersonal Reactive 

Interpersonal Proactive 

 

In Section 7.3.1, above, I showed an excerpt where Hadar suggested that a linearly 

independent set can have a linearly dependent subset. Yaniv did not agree that this is 

possible, and Hadar attempted to explain and justify her claim. I now exemplify the 

interpersonal communication between Hadar and Yaniv on this same segment. 

 

 Speaker Verbal NonVerbal Hadar’s 

Channel 

Yaniv’s 

Channel 

39 Hadar It’s possible (that a 

linearly independent 

set would have a 

linearly dependent 

subset) 

 

 Reactive 

Interpersonal 

 

40  We can bring (as an 

example of a linearly 

independent set) u1 as 

(1,0,0,0), and u2 as 

(2,0,0,0), u3 as 

(3,0,0,0) and u4 as 

(0,1,0,0) 

Writing 

example on 

paper  

Proactive 

Interpersonal 
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41 Yaniv Then it (the set of 4 

vectors) is still linearly 

dependent  

Pointing to 

paper 

 Reactive 

Interpersonal 

42 Hadar How can it ((0,1,0,0)) 

be linearly dependent? 

 Reactive 

Interpersonal 

 

43 Yaniv No, not it ((0,1,0,0)) 

by itself, 

  Reactive 

Interpersonal 

44 Yaniv But the entire set 

together 

Looking at 

Hadar 

 Proactive 

Interpersonal 

45 Hadar Why?  Reactive 

Interpersonal 

 

46 Hadar If you find scalars, that 

not all of them are zero 

Pointing to 

paper 

Proactive 

Interpersonal 

 

47 Yaniv Yes.    Reactive 

Interpersonal 

48 Yaniv But it doesn’t matter if 

he will be zero, if all 

the rest uh…if there is 

one … 

  Proactive 

Interpersonal 

Table 7-1 Classification of Hadar's and Yaniv's channels of communication 

Hadar’s reactions to Yaniv’s statements ([39], [42], [45]) were classified as using the 

interpersonal reactive channel, since these utterances were a reaction to Yaniv’s reasoning 

and ideas. Hadar also authored narratives of her own and asked for Yaniv’s input about these 

narratives in the proactive interpersonal channel ([40], [46]), where her utterances were 

aimed at getting a reaction from Yaniv. He responded to Hadar’s questions in the reactive 

interpersonal channel ([41], [43], [47]) by relating directly to the mathematical content of 

Hadar’s narrative. Yaniv then responded in the reactive interpersonal channel and asked for a 

response to another claim in the proactive interpersonal channel ([44], [48]).  

This analysis shows that both Hadar and Yaniv attended to each other’s mathematical 

narratives and justified their disagreement by relating to the content of the other’s claims. 

Hadar did not follow Yaniv’s claims blindly, rather she authored independent narratives of 

her own to which Yaniv listened and the pair discussed. For example, Hadar suggested in 

[40] a set of vectors and the pair discussed this set’s properties. This pattern of 

communication was repeated throughout the interaction. The coding of their entire 

interaction, in Appendix C-2, Section 10.3.2, displays that most of the pair’s discussion was 

in the interpersonal channel. Additionally, almost each narrative of Hadar and Yaniv was 

split into a reactive narrative followed by a proactive narrative. That is, first each of the pair 

responded to the other’s utterance and then stated something new, asking for a reaction.  

To conclude, this analysis showed that the initial impression of egalitarian interaction was 

justified. Moreover, it shows that the interaction was full of proactive and reactive 

communications on the part of both of the parties.  There was minimal use of the private 
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channel in Hadar and Yaniv’s discussion, thus they had relatively full access to each other’s 

routines for solving the task, they were both engaged in the discussion, and they both 

considered the others’ ideas as worthy of consideration. Thus, the communication supported 

collaborative learning and it is difficult to blame Hadar’s ineffective learning on any 

interactional features of their discussion. 

7.5 Hadar and Yaniv’s objectification processes  
In this section I turn my analytical gaze to the more tacit rules, or metarules of the 

mathematics underlying this task, to examine whether those could explain the ineffectiveness 

of Hadar’s learning. In Chapter 5, I showed that embedded in the task Hadar and Yaniv were 

working on is the mathematical object “set of vectors”. This object can be realized in four 

subdiscourses – vectors, sets, matrices and vector spaces.  The analysis in Chapter 5 pointed 

to the fact that solving this task necessitates using at least two of the subdiscourses - vectors 

and sets - and connecting between them. Therefore, to understand the roots of the persistence 

of Hadar’s idiosyncratic and non-canonical narratives I next turn to the subdiscourses Hadar 

and Yaniv used in their solution process. I do so by mapping their discourse on DDMTs, 

similar to those constructed for implementations of this task in Chapter 6.   

The DMT constructed in Chapter 5, on which the DDMT in Chapter 6 was based, was for the 

object “set of linearly independent vectors”. A set of linearly dependent vectors is a set which 

is not linearly independent, and thus uses the same subdiscourses, as was explained in 

Chapter 5. The students’ narratives were mapped onto a DDMT, as was done for the whole 

class discussion in Chapter 6, where the method is described in detail. Yaniv’s narrative 

pertained to a set of linearly dependent vectors, and so this was used as the node of the 

DDMT mapping his narratives. Hadar’s narratives pertained to both linearly dependent 

vectors and to linearly independent vectors, and so two separate DDMTs were constructed for 

her narratives. 

7.5.1 Yaniv’s DDMT 

 

Figure 7-1 Yaniv's DDMT for set of linearly dependent vectors 
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As can be seen in Figure 7-1, Yaniv authored realizations in the subdiscourse of vectors and 

in the subdiscourse of sets. He also authored links connecting between these subdiscourses. 

For example, Yaniv answered a suggestion of Hadar’s saying, “But it doesn’t matter (for the 

set’s linear dependence) if it (the scalar multiplying u4) will be zero, if all the rest (aren’t)” 

[47]. By this statement, he connected between a narrative in the subdiscourse of vectors about 

the scalars multiplying the vectors in a linear combination with a narrative in the 

subdiscourse of sets about the set’s linear dependence. He also said, “If there is one scalar at 

least that is different from zero...then it (the set) is (linearly dependent).” [53]. This narrative 

also includes a narrative from the vectors subdiscourse, “there is one scalar at least”, and a 

narrative from the set subdiscourse “it (the set) is (linearly dependent)”. These narratives, 

which connect between the subdiscourses, are from within the coalesced discourse of sets of 

vectors. Thus, the objects embedded in Yaniv’s narratives are from within this discourse, that 

is, the objects Yaniv discussed were “sets of vectors”.  

The DDMT showed that Yaniv’s narratives pertain to the mathematical object of a set of 

vectors. This is also noticeable in the narratives. When Yaniv discussed the property of linear 

dependence of a set he consistently used the singular pronoun it to refer to this object, for 

example, “If it is already linearly dependent” [29] and “that means that it is (linearly 

dependent)” [45]. This suggests that he had encapsulated the different vectors into a single 

set, and he treated the set of vectors as an object, rather than as only a collection of objects 

(vectors). His narratives also referred to sets of vectors as an object with properties, and not 

as the result of a procedure. For example, “the set altogether is” [43] and “if zero is in the 

set” [70]. Yaniv’s routine, to examine the set for specific subsets, also pertained to the object 

“a set of vectors”. 

7.5.2 Hadar’s DDMTs 

Hadar authored non-canonical narratives and some of her narratives were authored with 

Yaniv’s support and as a result of her interaction with Yaniv. This is noted in the DDMT by 

filling in the boxes of these types of narratives in different colors. As explained above, there 

are two DDMTs for Hadar – one mapping her narratives pertaining to linear dependence and 

one mapping her narratives pertaining to linear independence. 
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Figure 7-2 Hadar's DDMT for set of linearly dependent vectors 

The DDMT of Hadar’s narratives about linearly dependent sets shows that these are mainly 

in the subdiscourse of vectors. She authored by herself two narratives in the sets discourse, 

including one narrative not connected to any justification, “the set is linearly dependent”. The 

other narrative she authored was her “prototype” of linear dependent sets. Hadar said, “3 like 

this (u1 = (1,0,0,0))” [30] and explained “Three that are dependent with u1. Let’s say here 

(the first component of the vector) is 2,3 and 4.” [36]. Thus, Hadar’s narrative was that the 

set {(2,0,0,0), (3,0,0,0), (4,0,0,0)} was linearly dependent. 

 Two of the narratives that appear in the DDMT were authored with Yaniv’s support. This 

was shown above in Section 7.3. With this support, Hadar connected between a narrative in 

the vector subdiscourse and a narrative in the set subdiscourse. However, the narrative in the 

vector subdiscourse was a small modification of her idiosyncratic procedure and did not 

herald any major change in her routine. She also authored a non-canonical link between the 

subdiscourses, shown in the figure above as a grey line. She said, “(linear dependence) 

means that alpha1 is equal to alpha 2 is equal to zero, they are all equal to each other and 

they are equal to zero” [72]. This is part of the definition of linear independence, and not 

linear dependence. Yaniv’s protest confused Hadar, and she said, “We are getting confused 

with the definition” [76]. 
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Figure 7-3 Hadar's DDMT for set of linearly independent vectors 

This DDMT displays Hadar’s narratives pertaining to linear independent vectors. In this case, 

Hadar authored narratives in both the vector subdiscourse and the sets subdiscourse. 

Although there are numerous narratives in the sets discourse, they did not support her use of 

this discourse. In this discourse she authored narratives about specific sets of vectors, which 

can be considered her “prototypical” dependent set. These sets include elements from the 

standard basis, {e1=(1,0,0,0), e2=(0,1,0,0), e3=(0,0,1,0)}. The other narratives she authored in 

this subdiscourse were not canonical and could not support her objectification process.  

In this DDMT Hadar’s idiosyncratic procedure for determining if a vector is linearly 

independent is apparent in the vector subdiscourse. Yaniv supported her authoring an 

additional narrative in the vector subdiscourse. During the discussion she said, “That means 

that alpha 1 is equal to alpha 2 is equal to zero, they are all equal to each other and they are 

equal to zero” [72]. Yaniv told her that this means linearly independent, and she agreed by 

repeating his words, “It’s linearly independent” [77]. The link between the two subdiscourses 

was endorsed by Hadar, but Yaniv authored it. 

The two DDMTs show that the interaction with Yaniv supported Hadar authoring narratives 

in the vector subdiscourse and helped her author new narratives in both the vector 

subdiscourse and the set subdiscourse.  Many of the narratives she authored in the sets 

subdiscourse were not canonical. She had not yet objectified the set of vectors objects, thus 

this subdiscourse had no meaning for her and she interpreted the narratives through the 

collection of vectors object. She also authored links between the subdiscourses. However, 

these links were with her idiosyncratic procedure and not with more general narratives. In 

addition, all the links to the sets subdiscourse were to the narrative “the set is in/dependent”. 

This is a narrative she seems to be repeating ritually. 

To summarize, Hadar’s narratives were from within the subdiscourses of vectors and sets, 

and not from the coalesced discourse of sets of vectors. The objects embedded in Hadar’s 

routine were individual vectors, whereas the narrative she was attempting to author pertained 
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to sets of vectors. This could be seen, for example, in her statement that “The three (vectors) 

are (linearly independent), but the fourth is not (linearly independent)” [38]. The set of 

vectors object was still not encapsulated in Hadar’s discourse, as seen when she used plural 

pronouns to designate the set of vectors, and not singular. This can be seen when she says, 

“they are linearly dependent” [32], “we will cancel them out” [52], and “we add to them” 

[54]. I conclude from this analysis that Hadar had not yet objectified the mathematical object 

of “sets of vectors”. Hadar’s incomplete objectification process meant that she was using 

objects from the subdiscourses of sets of vectors, and the metarules pertaining to the objects 

of sets of vectors discourse had no meaning for her. 

7.6 Hadar and Yaniv’s collaborative learning process 
Yaniv’s objectification process was significantly more advanced, in relation to Hadar, as far 

as the object “set of vectors” was concerned. Yet this did not mean that Yaniv did not have 

something to learn from the discussion with Hadar. On the contrary, their collaborative 

discussion compelled Yaniv to articulate his justifications, to connect theorems he already 

had endorsed to the definition and to clarify to himself the manipulations used in proofs about 

linear dependence. He authored new object-level narratives within subdiscourses in an 

endogenous development, or object-level learning. He also practiced object related metarules 

and developed new cross-subdiscourse narratives in horizontal exogeneous development, or 

meta-level learning. I hypothesize that Yaniv’s location on the trajectory of objectification 

supported his learning on all levels and allowed him to meaningfully use the opportunity for 

explorative participation afforded to him in the workshop. 

In contrast, Hadar was much further back in the process of objectification of the set of vectors 

object, and her narratives pertained to single vectors. She did author, with the support of 

Yaniv, new narratives within subdiscourses and authored more realizations. Thus, there was 

some object-level learning for Hadar. However, most of the links between subdiscourses she 

authored were non-canonical. The discussion between Hadar and Yaniv was ineffective in 

dispelling the non-canonical metarule about linear dependence being a property of single 

vectors that was repeatedly authored by Hadar. Although Yaniv protested against it, and once 

even articulated the difference in their mathematical objects, saying, “No, it (the vector) isn’t 

(linearly dependent) – but the set altogether is” [43]. However, his protests were not noticed 

by Hadar. Moreover, the statement “the set altogether is” had no meaning in her discourse, 

since “the set” for her was only a collection of objects, without properties of its own. I 

suggest that this was the reason she did not attend to Yaniv’s protests and continued to justify 

her claims using her idiosyncratic procedure.  Thus, despite the opportunities for meta-level 

learning afforded to Hadar, she could not take advantage of them. 

7.7 Alice and Ben – a pair with unequal participation  
In the previous sections I examined the collaborative learning session of a pair of students 

with an egalitarian interaction. There were also groups of students where the interaction was 

unequal. The obstacles for learning found in Hadar and Yaniv’s case, which was 

characterized by relatively egalitarian communicational patterns led me to hypothesize that 

much more serious obstacles would be found in a non-egalitarian couple. On the other hand, 

it could be that non-egalitarian pairs, where one student functioned as the expert and the other 

as novice (or follower) would have less communicational problems, and the group work 

would be beneficial there (at least for the novice).  I turn to examine these possibilities in the 

next section. 
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As described more fully in the methods section, the initial viewing of all the recorded pairs 

yielded 6 recorded groups where one of the students acted as an expert and as a leader, and 

the other students acted as a follower. Group S3-2 (Workshop S3, Group 2) were selected for 

deeper analysis. 

Alice and Ben, a mixed-gender pair who were previously acquainted, were two North 

American first year students in the Institute’s International Mechanical Engineering program.  

They were sitting next to each other and worked together as a pair in a workshop about linear 

dependence.   One of the reasons for choosing their collaborative session for closer analysis 

was based on the notes pertaining to the two students in my teaching journal. There, I wrote 

that after working together, the pair’s presentation included Alice stating she did not agree to 

what she was presenting. Alice volunteered to present her and Ben’s solution on the board to 

the class saying, “I can try (to present our solution), but it’s going to be tough”. She took 

Ben’s notebook and started to write a proof on the board, but then said, “How do we know 

this? I don’t agree with what’s written here”. Later she told me that she did not feel equally 

productive to Ben in this session. These statements of Alice’s gave a first indication that the 

communication between the pair was not effective and that their seemingly jointly authored 

mathematical narrative was not endorsed by Alice.  

Alice and Ben were working on the same task as Hadar and Yaniv. 

Task: True or false: Let V be a vector space. {u1, u2, u3}⊂ V is a linearly dependent 

set and u4 ∈ V then the set {u1, u2, u3, u4} is linearly dependent. 

In contrast to Hadar and Yaniv, Alice and Ben did not author individual proofs that could be 

re-constructed from their initial discussion. The pair’s peer-learning phase led to a non-

canonical proof that was mostly authored by Ben. I first examine the patterns of 

communication of this pair to confirm the initial determination of an unequal interaction. 

7.7.1 Channels of communication 

This analysis was carried out in the same manner as the analysis of the channels of 

communication between Hadar and Yaniv and is exemplified on the following excerpt. The 

channels were labelled and colored according to the following table. In Appendix D, Section 

10.4, the full analyzed transcript is available.  

 

Private 

Interpersonal Reactive 

Interpersonal Proactive 

The pair read the task to themselves. Ben looked only at the paper which was in front of him 

and started talking out loud using an instructive tone of voice. 

 
Speaker Verbal NonVerbal Ben’s 

Channel 

Alice’s 

channel 

11  
Ben Is there a vector that 

you can add to this set 

Looking 

down 

Private  
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({u1, u2, u3}) that will 

uhh…ummm..uhh.. 

12  

Ben The question is – it’s a 

combination of these 

ummm 

vectors…ummm…wait 

a second. 

Looking 

down 

Private  

13  

Ben Umm… It (a vector) is 

a combination. 

Looking 

down 

Private  

14  

Alice I don’t know if it’s (the 

assertation) always 

true. 

Sits up 

suddenly 

 Private 

15  

Ben Yeah. It (the 

assertation) is true.  It 

is true. 

Matter of 

fact.  

Interpersonal 

Reactive 

 

16  

Ben If this ({u1, u2, u3}) is 

linearly dependent then 

this ({u1, u2, u3, u4}) is 

linearly dependent 

Looking 

down 

Private  

17  

Alice But what if we add…   Interpersonal 

Proactive 

18  

Ben Forget it, it doesn’t 

matter – it’s  true. 

 Interpersonal 

Reactive 

 

Table 7-2 Classification of Alice and Ben's channels of communication 

In [11] Ben restated the question asking if there could be a counter example. He wondered if 

there could exist a vector u4 such that the set ({u1, u2, u3, u4}) has some property. In [12] he 

questioned if one of the vectors is a linear combination of the others, which is mathematically 

equivalent to the set being linearly dependent. However, he mentioned a specific vector “it’s” 

and not “one of the vectors”.  He answered himself in [13] “it is”. This is an outline of the 

proof he authored in more detail later, which is presented in the next section. 

Ben did not ask Alice if she agreed with him or if she thought differently. Neither did he ask 

her for corroboration of any of his statements. Thus, Ben was using the private 

communication channel to elicit the initial narratives about the task. Initially, Alice was quiet, 

listening to Ben. Her first questioning of Ben’s statements came in [14]. This sitting up may 

signal that she had an idea of her own for how to solve the task, and her stating that she was 

not sure it was true may hint that she had an idea of an example for which the assertation did 

not hold. However, this idea of an example, if ever articulated to herself, was kept in her 

private channel. Ben reacted to her interruption of his thoughts in the reactive interpersonal 
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channel. In [15] he dismissed her questioning, without asking for any details of why she was 

objecting. He reaffirmed his statements, by simply restating the assertation, “If this ({u1, u2, 

u3}) is linearly dependent then this ({u1, u2, u3, u4}) is linearly dependent” [16]. Again, his 

reasoning for the truth of this assertation was kept in the private channel, and again he did not 

ask Alice for any input.  

The classification described above was carried out for all of Alice and Ben’s discussion and 

showed large chunks where Ben’s utterances were in the private channel, and he was focused 

on his own reasoning and ideas. Ben used the interpersonal channel almost only when 

responding to direct questions by Alice and requests by her for corroboration of her claims. 

Alice referred questions to Ben, asked him to arbitrate if a statement was correct 

mathematically. Ben asked Alice to “write it neatly”, whereupon she restated his proof and 

turned to him to corroborate her statements using the interpersonal proactive channel. 

However, very few of Alice’s statements are in the interpersonal reactive channel, since there 

was never anything for her to react to. In addition, except once at the beginning, Alice did not 

present any of her own ideas or reasoning. Ben’s answer to her idea was to brush off her idea, 

without even hearing it. After this, Alice did not suggest any more of her ideas.  

The few utterances of Alice that were in the interpersonal reactive channel were in places 

where Alice responded to a statement made by Ben. These include when Ben asked Alice 

questions in response to her questioning of his proof. Alice asked, “why?” and as part of his 

explanation to her, he waited for an affirmative response to his statements. There are also two 

places that Ben turned to Alice and asked her for corroboration of his statement. These are in 

the middle of chunks of Ben communicating in the private channel. There, he turned to Alice 

and asked for corroboration. In the first he waited until she nodded, and in the second he 

waited for her to respond affirmatively. He was satisfied with her response, even though she 

did not respond directly to his questions.  

To conclude, the channels of communication analysis displayed that Ben was mostly 

communicating in the private channel. Alice, after once attempting to communicate in the 

private channel when trying to think up a counterexample to Ben’s claim that the assertation 

was always true, communicated mostly in the proactive interpersonal channel by responding 

to his statements. The communication between the pair was glaringly unequal. Ben adopted 

the role of expert and leader, and Alice aligned herself with this.  

7.7.2 Ben’s DDMT 

In contrast to Hadar and Yaniv, who arrived at a canonical proof for this task, Alice and 

Ben’s discussion led to a non-canonical proof that was mostly authored by Ben. Alice hardly 

contributed to the pair’s solution, and thus it is not possible to examine her mathematizing. I 

examined Ben’s mathematical narratives, focusing on the subdiscourses that he used. These 

narratives are displayed on a DDMT in Figure 7-4, below. 
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Figure 7-4 DDMT Ben Linear Dependent Set 

The DDMT above shows that most of Ben’s narratives were in the vector subdiscourse. Ben 

also authored a single narrative in the sets subdiscourse, “the set is linearly dependent” and 

linked it to narratives in the vector subdiscourse.  

The DDMT also displays that Ben authored a single narrative in the vector space discourse. 

Towards the end of the pair’s discussion, after Alice had restated Ben’s proof and Ben 

confirmed that she did it correctly, Alice kept repeating “why?” and “I don’t understand 

why?”. After multiple requests, Ben attempted to answer Alice’s not well-defined question 

with a narrative in the vector space discourse about the necessity of a linear independent 

vector to be able to “span all the vectors”. He did not connect this to any other subdiscourses, 

and it did not satisfy Alice, who said, “I agree with you, but I don’t understand why.” [115]. 

Ben finally told Alice to ask me, and that shut down the discussion. This single use of a 

subdiscourse, unconnected to the other subdiscourses, did not advance the pair’s discussion. 

7.7.3 Ben’s mathematical routine for solving the task 

I now examine Ben’s narratives through his use of the vectors subdiscourse. In this 

subdiscourse there is meaning to vectors, to algebraic manipulations of vectors and to linear 

combinations of vectors. However, scalars have meaning in this discourse only as part of 

algebraic manipulations, and not as a set of scalars used in linear combinations. In the 

coalesced discourse of “set of vectors” the given “{u1, u2, u3} is a linearly dependent set” is 

the same as stating “there exists a set of three scalars, {α, β, γ}, not all of them zero, such that 

α⋅u1 + β⋅u2 + γ⋅u3 = 0”. In the vectors subdiscourse a set of scalars with properties of the set 

(not all zero) has no meaning. Ben formed narratives using scalars as part of the narratives as 

arbitrary variables, without tending to their properties in the set of vectors. This can be seen 

in Ben’s following narratives. 

Ben started the proof by translating the given, “{u1, u2, u3} is a linearly dependent set” to the 

narrative that there exists a linear combination of the three vectors, α⋅u1 + β⋅u2 + γ⋅u3. He 

constructed this linear combination, implicitly equated it to zero and used algebraic 

manipulation that led to the statement: 

(I)  − 𝛼 ∙ 𝑢1 =  𝛽 ∙ 𝑢2 +  𝛾 ∙ 𝑢3 
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Then Ben stated, “One of these is not zero” [23] and “one of the coefficients is not zero” [24] 

and continued his proof by assuming that α ≠ 0, as can be seen since he divided the equality 

by α, “beta over alpha, gamma over alpha” [33], to arrive at the claim: 

(𝐼𝐼) 𝑢1  =  
𝛽

−𝛼
𝑢2  +  

𝛾

−𝛼
𝑢3 

In the coalesced discourse of sets of vectors, the set of scalars used in the non-trivial linear 

combination has a non-zero element. Ben probably interpreted this in the vectors 

subdiscourse as the scalar multiplying a certain vector (α multiplying u1) is not zero.  

Ben next changed narrative (II) to: 

(𝐼𝐼𝐼) 𝑢3  =  
𝛽

−𝛼
𝑢2  +  

𝛾

−𝛼
𝑢1 

This change was justified by him as “I’ll change the 3 to 1. It’s usually the last one” [35]. 

Changing the order of the vectors, without changing the scalars, is consistent with his use of 

the scalars as arbitrary variables which can change places and roles. 

Ben then added a fourth vector to the linear combination he had constructed saying, “if you 

add u4… then…we’re going to have” [45] and authored the statement: 

(𝐼𝑉) 𝛼 ∙ 𝑢1 + 𝛽 ∙ 𝑢2 + 𝛾 ∙ 𝑢3 + 𝜃 ⋅ 𝑢4 

He then said, “now we want that to be equal to the zero vector in order to check whether 

they’re dependent or independent” [46]. Ben’s procedure for checking if vectors are linearly 

dependent was to equate the linear combination constructed to zero and use algebraic 

manipulations to show that one vector can be written as a linear combination of the others.  

He then reiterated, “we know that alpha is not equal to zero” [48], as within the vectors 

subdiscourse this is the determined value of the alpha from his previously authored narrative. 

Using α ≠ 0 and again switching places between the vectors u1 and u3, justifying it by 

“instead of 3,’cause” [53] he authored: 

(V) −
𝛽

𝛼
⋅ 𝑢2 −

𝛾

𝛼
⋅ 𝑢1 −

𝜃

𝛼
⋅ 𝑢4 = 𝑢3 

Ben next claimed, “This shows that these (four vectors) are a combination of the previous 

ones” [99], and thus it is linearly dependent, because “a linearly dependent set has a vector 

that is a combination of the others” [101]. That is, he claimed he had proved the truth of the 

assertation. 

To summarize, Ben’s authored proof used a routine that was within the vectors subdiscourse. 

Alice’s minimal attempts at voicing her dissatisfaction with Ben’s set of claims, for example, 

asking, “why does that (the four vectors are a linear combination equaling zero) matter?” 

[100] and “why does that (the four vectors are a linear combination) come from the 

definition?” [104], were brushed off by Ben, “It does” [105], without providing any 

justification. These communication patterns of the pair which constrained any changes was 

also exemplified in the analysis of the patterns of communication, where Alice’s suggestion 

of an object level narrative was ignored.  

7.7.4 Ben’s objectification process 

Ben authored a proof within the vectors subdiscourse, while the property he was attempting 

to prove, that the set {u1, u2, u3, u4} is a linearly dependent set, pertains to a set of vectors. In 
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this section, Ben’s location on the trajectory of objectifying the “set of vectors” that was at 

the heart of this task is examined.  

Ben used properties of vectors and manipulations on vectors to author his narratives. He 

constructed linear combinations, such as (𝐼𝑉) 𝛼 ∙ 𝑢1 + 𝛽 ∙ 𝑢2 + 𝛾 ∙ 𝑢3 + 𝜃 ⋅ 𝑢4, by 

manipulating vectors, within the vectors subdiscourse. Ben added a vector to the linear 

combination of the three vectors, thereby constructing a linear combination of the four 

vectors, without considering the sets - a set with 3 elements and a set with 4 elements - as 

different objects. This can also be seen in the excerpt below, where he communicated in the 

private channel. 

       30 Ben:       Do we even need to do it this way? I don’t even know… Fine. 

31 Ben:  Beta u2 plus gamma u3. Now u1 is equal to… do we even need to do it this 
way? I don’t even know… fine… beta over alpha gamma over 
alpha…(looking at paper) 

32 Ben:  So, we have represented the u1 vector, in terms of a combination of the 
other vectors. (Looking at Alice) 

33 Ben:  It shouldn’t be 1 it should be three, I’ll change the 3 to 1. It’s usually the 
last one. (Changing on paper) 

Ben’s statements mostly related to describing manipulations of vectors. In [31] he described 

the construction of a linear combination and in [33] he used a procedure of changing the 

indices to suit what he deemed the expression should look like. His explanation aimed at 

Alice in [32] also describes a procedure, with the task unbonded to the original task situation 

of proving linear dependence.  

Additionally, Ben’s routines were not goal oriented, but rather procedure-oriented (or ritual). 

He kept trying different procedures, as can be seen in the excerpt. He used the procedure of 

constructing a linear combination and isolating a vector with algebraic manipulations in [31] 

and explains this procedure in [32]. In [33] he uses a procedure of switching between vectors. 

In addition, Ben’s question, “do we need to do it this way? … I don’t know…fine.” [30] also 

indicates that he performed the algebraic manipulations for no specific goal. 

Although Ben had constructed a link between the narrative “one vector is a linear 

combination of the others” in the vectors subdiscourse and “the set is linearly dependent” in 

the sets subdiscourse, he interpreted this through the vector subdiscourse. In the coalesced 

discourse this link is interpreted that there exists a vector which is a linear combination of the 

other vectors, but there is no way to determine which vector. Ben’s narratives that used this 

link were based on a specific vector being a linear combination of the others. 

To conclude, Ben’s narratives pertained to the vector object, and not the “set of vectors” 

object, his narratives were mostly within the subdiscourse of vectors and his routine was not 

goal oriented, but rather a list of procedures. This leads me to suggest that he had not yet 

completed the objectification process for a set of vectors.  
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7.8 Summary of Chapter 
This chapter examined the learning processes during small group discussions, where the 

students worked collaboratively independent from the instructor. The four students examined 

in this section exhibit different learning processes in a collaborative setting. 

Yaniv’s narratives and metarules were canonical and his objectification of the sets of vectors 

objects was advanced. His participation in a collaborative discussion allowed him to bond his 

narratives to the definition, to articulate more clearly his narratives and to construct examples 

and mathematical narratives justifying his claims. The interaction with Hadar supported his 

authoring narratives in the coalesced discourse and afforded him opportunities for explorative 

participation in that discourse. 

Hadar had just begun the objectification process of the set of vectors object. Thus, she used 

metarules which were canonical in the subdiscourse of vectors, but were not canonical in the 

new coalesced discourse. Her participation in the collaborative discussion advanced her 

object-level narratives. She authored object-level narratives, examples and justifications. 

However, this discussion did not support the exposure of her non-canonical metarule. Thus, 

although the collaborative discussion advanced her object-level narratives, it did not support 

the meta-level shift necessary for her. 

Ben’s objectification process of the set of vectors object was also very preliminary, and thus 

he authored narratives almost exclusively in the vector subdiscourse.  He participated in a 

peer discussion, however the discussion was not collaborative. He brushed off any challenges 

to his mathematical narratives, and thus did not confront alternative narratives that may have 

proved his ideas wrong. Moreover, he was not required (or did not feel obliged) to justify any 

of his statements and thus none of his erroneous claims were exposed. The discussion did not 

advance him at all. 

Alice was not even given a chance to suggest any of her mathematical narratives. She was not 

given the opportunity to participate in a discussion. The peer discussion was not collaborative 

and did not support advancing her narratives at all.  

The four students struggled independently (from an expert) with a task that had the potential 

for meta-level learning, as shown in Chapter 5. The main potential included object related 

meta-level learning by authoring narratives in the coalesced discourse, which consists of 

connecting between object level narratives in the separate sub-discourses available to the 

students. The task also had the potential for enacting executive meta-rules, such as how to 

prove or refute assertations. Hadar and Yaniv had difficulty with the object related metarule 

of linear dependence as a property of sets. Alice and Ben had difficulty with the executive 

meta-rule of circular logic. This difficulty with metarules occurred in both pairs of students, 

including the pair whose interaction was egalitarian.  

The meta-level learning of connecting between object-level narratives necessitates familiarity 

with the object-level narratives. The tasks also had the potential for this object-level learning. 

The pair of students whose communicational patterns were more egalitarian took up this 

opportunity and advanced their object-level narratives. In contrast, the pair of students with 

unequal communicational patterns had difficulties with the object-level also. The students 

utilized the opportunity for object-level learning when the communication between them 

supported this. Yet, in both cases, the metarules were not sufficiently exposed and thus 

hindered advancement.  
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8 Discussion 

8.1 Summary and connection to literature 
There were two main goals of this study. One goal was to adapt instructional practices, 

shown to promote discourse-rich explorative participation to a university linear algebra 

course to support and encourage student participation and learning. The second goal was to 

explore an implementation of the above adaptation to better understand the processes of 

learning in an undergraduate classroom in terms of the content and the social interactions. 

Active, student-centered meaningful teaching practices are discussed in many studies in 

elementary and secondary mathematical classrooms (e.g. Michaels et al., 2008; Schoenfeld, 

2014; Smith & Stein, 2011) and in tertiary mathematical classrooms (e.g. Biggs & Tang, 

2007; Hershkowitz et al., 2022; Laursen & Rasmussen, 2019; Legrand, 2001; Talbert, 2014). 

More instructors are aware of the importance of tertiary student engagement in meaningful 

mathematics, student collaboration for sensemaking, instructor inquiry into student thinking 

and equitable instructional practice (Laursen & Rasmussen, 2019). This study adds to this 

body of literature and uses the commognitive framework (Sfard, 2008) to examine the 

learning processes involved in various aspects of university level mathematics (Nardi et al., 

2014).   

Adapting instructional practices included designing tasks aimed at promoting discourse-rich 

explorative participation in tertiary mathematics courses. A necessary, but not necessarily 

sufficient, condition for productive discussions is providing learners with tasks that support 

this type of setting (Cooper & Lavie, 2021). The tasks should expand students’ mathematical 

experiences and invite students to deeper engagement (Koichu & Zazkis, 2021). I adapted the 

RTA tool (Weingarden et al., 2019) to design a tool to examine the designed tasks, the DMT. 

Using this, I found the mathematical objects embedded in the designed tasks, these objects’ 

realizations in multiple subdiscourses, and the opportunities afforded by the tasks for saming 

between these realizations.  

In Chapter 5, by analyzing the DMTs drawn for the designed tasks, I showed that the tasks 

had the potential to encourage explorative participation and to support both object-level 

learning and meta-level learning. The object-level learning includes the opportunities for 

authoring multiple realizations for mathematical objects and for saming between realizations 

within a subdiscourse. That is, the tasks afford opportunities for authoring narratives within a 

subdiscourse. Yet, the richness of the designed task is displayed by the DMT analysis of the 

potential for meta-level learning embedded in the tasks. The tasks afford meaningful, rich 

opportunities for saming realizations of linear algebra objects in different subdiscourses and 

for traversing the subdiscourses involved in this domain. These opportunities support the 

unification of different subdiscourses and the coalescing of a new discourse. Therefore, the 

tasks designed for the workshops had the potential for supporting explorative participation 

due to their capacity to provoke discussions, including compelling students to author 

realizations and links and providing the instructor with opportunities for highlighting 

unfamiliar links.  

The DMT tool offers an operational definition of the potential of a task to support explorative 

participation. This connects to Tekkumru-Kisa and colleauges’ (2020) definition of the 

potential of a task as the cognitive demand embedded in a task. Their definition is interwoven 

with the task’s implementation by a teacher and how it is perceived by students. They suggest 
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that the teacher needs to facilitate the use of the task and that the students need to have 

experience in solving this type of tasks in order that the cognitive demand of the task be 

maintained in all its phases. In contrast, the commognitive DMT tool examines the potential 

of a task independent of the context in which it will be used. This allows examining tasks 

before they are implemented in a classroom setting and supports choosing appropriate tasks 

for use in classrooms or textbooks.  

It is also important to examine the tasks independent of the context to ensure that they can 

support a rich discussion. In Chapter 5 I described a commognitive analysis of possible 

solutions which showed that these tasks included impasses, where the student had no 

available routines to continue within a single subdiscourse. I showed that the solutions of 

tasks which support rich discussion include multiple discourses. There are many tasks that 

support learning, but only within a single discourse. For example, a task that asks for which 

values of a parameter does a given system, including a parameter, have a single solution, 

have infinite solutions and has no solutions. This task supports authoring realizations and 

practicing procedures in the matrix subdiscourse. However, it does not support the use of 

multiple discourses, since it can be solved completely within that discourse. Weingarden and 

colleagues (2019) examined classroom discussions for links authored between subdiscourses 

to assess explorative participation in classrooms. If a task did not have the potential for links 

between subdiscourses, there would be no possibility of them being authored in a classroom 

discussion, since a discussion facilitated by the teacher cannot include links if the potential 

for them does not exist. Weingarden and colleagues assumed that such links can be authored 

when solving the task. In this study, I did not take this assumption for granted, since one of 

my goals was to design the tasks and understand to what extent these indeed offer 

opportunities for explorative participation. I thus examined the opportunities for linking 

available in a task, independent of the discussion facilitated by the teacher. This demanded an 

extension of the methodology for constructing RTAs, as explained by Weingarden and her 

colleagues (2019). The DMT extended the tool to map families of objects, unlike the RTA 

and realization trees which use single objects as nodes. Additionally, the DMT maps the 

possible discourses and the links between the discourses and does not focus on the specific 

realizations nor on the links within discourses. Finally, the DMT maps a priori, before a 

discussion, what potential the task includes, whereas the RTA maps a discussion based on 

what was mentioned a posteriori.  

This study adds to Cooper and Lavie’s (2021) examination of tasks used in a lesson including 

explorative participation. They describe tasks that include interdiscursive use of routines and 

visual mediators and explain that these tasks support the students’ use of a new discourse, by 

allowing them to draw on their precedent learners’ space and the new discourse. This study 

adds to this and suggests that interdiscursive tasks also support linking between two 

subdiscourses and the use of the new, coalesced discourse. That is, interdiscursivity of a task 

has two facets. The first one, as Cooper and Lavie described, supports introducing students to 

a new, unfamiliar discourse. The second one, as described in this study, supports the 

coalescence of two subdiscourses into a new discourse. That is, using familiar subdiscourses 

to author a narrative in both. Therefore, these tasks can be used for both pedagogical aims – 

introducing a new discourse and for coalescing subdiscourses. 

To sum up, the DMT analysis of the tasks showed that, irrespective of the context and the 

implementation, the tasks have the potential for both object-level learning and meta-level 

learning and for encouraging explorative participation. The meta-level learning embedded in 
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the tasks includes authoring and practicing object-related metarules. This analysis also 

supported examining specific characteristics of these tasks, such as interdiscursivity and the 

inclusion of impasses. 

In the second chapter of the findings (Chapter 6) I examined to what extent were the 

opportunities afforded by the designed tasks  taken up in implemented workshops. For this, I 

expanded the DMT tool to a DDMT (Discussion Discourse Mapping Tree). My goal for 

mapping the lessons was to examine if there were realizations from within different 

discourses and if connections between these discourses were authored during 

implementations of the tasks examined in Chapter 5. The DDMT tool was designed to map 

subdiscourses involved in the discussions and not the specific realizations that were 

mentioned within each subdiscourse. While the specific realizations and the object-level 

narratives, from within a specific subdiscourse, are an integral part of the meta-level learning, 

they were not the focus of this analysis. Thus, the DDMT first utilized the DMT’s a priori 

analysis of the subdiscourses available for the objects embedded in the task. The DDMT next 

utilized a posteriori analysis to draw only the realizations mentioned in class. The 

construction of the DDMT in this manner allowed me to map the subdiscourses which were 

mentioned in a discussion, which connections were authored during the discussion and who 

authored them. This type of analysis aligns with didactical engineering methods (Artigue, 

1994) which use a priori analysis and a posteriori analysis to identify crucial phenomena and 

then productively implement theoretical approaches regarding this phenomena (Artigue, 

2009). Artigue posits that didactical engineering methods can establish effective connections 

between researchers and teachers to scale up developments and disseminate pedagogical 

suggestions. Thus, the DMT and DDMT tools, used for research and development, might 

avail in the next crucial step in this project – scaling up and disseminating the developed 

teaching practices.  

The DDMT analysis presented in Chapter 6 found that, in most cases, the implementation of 

the tasks included support of the students authoring narratives in multiple subdiscourses and 

exposing the students to links between these subdiscourses. There were numerous narratives 

in the new, coalesced discourse mentioned during the discussions. The students availed 

themselves of the opportunities provided. The mapping of the DDMT, based on viewing the 

recorded whole class discussions, showed that the discussions included the construction of 

multiple links between branches of the DDMT. The links between subdiscourses illustrate the 

potential for explorative participation and the potential for meta-level learning embodied in 

the workshop, which is authoring narratives in the new, coalesced discourse.  

The analysis also showed that the opportunities for meta-level learning in the discussion were 

supported by the links authored or instigated by the instructor. The focus of the discussion 

was guided to both object-related metarules of linking between subdiscourses and executive 

metarules that the students were missing. The instructor also ensured that the discussion 

included multiple discourses, and that the discussion did not remain in a single, familiar 

subdiscourse. The links between the multiple subdiscourses were mostly either authored by 

the instructor or elicited from the students by the instructor’s questions and prompts. The 

narratives authored by the instructor ensured that  realizations were authored in multiple 

discourses and supported links between the discourses. This aligns with Nachlieli and 

Elbaum-Cohen’s (2021) suggestion that student-centered instruction might support meta-

level learning when strongly guided by an instructor who can explicate the new rules of the 

subsuming discourse and stress the limitations of the old, familiar discourse. 
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Another finding of this analysis was that the construction of links between subdiscourses was 

dependent on the students’ familiarity with the narratives within the subdiscourses. This 

aligns with the necessity for object-level learning as a necessary precursor to meta-level 

learning (Sfard, 2008). Object-level learning, according to Sfard, expands an existing 

discourse by extending the vocabulary and producing new endorsed narratives within that 

discourse. Meta-level learning is usually related to a change in discourse. Sfard suggests that 

the change in discourse involved, that is becoming a participant in a new discourse, hinges on 

the capacity for using previously adopted discourses. In other words, participating in a new 

discourse is contingent on being familiar with the old discourse. In this study I showed that 

when students were not familiar with the old discourse, they did not advance to the new 

discourse. This occurred, for example, in the discussion about diagonalizable matrices, which 

was focused on procedures from the subdiscourse of eigenvalues. In contrast, when students 

were familiar with the old discourse, they were able to author narratives in the new, coalesced 

discourse. For example, in the workshop about matrices, the students were familiar with the 

old subdiscourses, and the discussion was very focused on linking between these. 

Finally, the DDMT analysis of the whole class discussion also brought to the fore that there 

was usually a dominant discourse in each workshop. This dominant discourse was that which 

was either more familiar to the students or which included familiar procedures. Viewing the 

workshops with the lens of the DDMT revealed that the students authored narratives in those 

subdiscourses that were more familiar to them and the use of other subdiscourses had to be 

actively encouraged by the instructor. Additionally, the DDMT showed that students justified 

claims with narratives from that subdiscourse and often reverted back to using that 

subdiscourse, even after other, more efficient subdiscourses were introduced into the 

discussion. The students needed support to transition to other subdiscourses, which was a 

necessary step to connecting between narratives in different subdiscourses. This study 

extends Lithner’s (2000) suggested that one of the causes of university students’ difficulties 

in solving problems is that they focus only on the limited procedures that they remember. The 

limited procedures inhibit students from attempting to explore other approaches  and other 

solutionss . This study extends this idea of the students’ use of limited procedures, to the 

limited use of different subdiscourses. The limited procedures that the students use are 

probably the procedures available to them in the dominant subdiscourse. Moreover, Lavie 

and colleagues (2019) suggest that people interpret a task situation and thus choose a 

procedure within a precedent-search-space (PSS). This study expands that notion and 

suggests that the students choose procedures from the discourses which are within their PSS. 

The DDMT analysis of the whole class discussions demonstrated various aspects of the 

students’ participation in mathematical discussions. However, the main part of the students’ 

independent exploration and struggle with the tasks took place in the collaborative learning 

phase of the workshops. During these small group discussions, the students worked 

independently from the instructor. Thus, I examined the learning opportunities offered to the 

students in the small group learning sessions. 

The third chapter of the findings (Chapter 7) examined the small group learning sessions, 

which employed collaborative learning, to study the learning processes involved with no 

expert support. I examined two different types of interactions. The first was a pair of students 

with a mostly egalitarian interaction and a seemingly productive collaborative learning 

session. In this pair the commognitive analysis revealed that although one of the pair 

benefited from the interaction, the other did not. The second pair I examined was 
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characterized by a glaringly unequal interaction. In this case, both the object-level learning 

and the meta-level learning were impaired. These findings aligns with studies that showed 

that unequal student identities of gender, race and the like negatively affect learning 

outcomes and collaboration in STEM education at university levels (Carlone & Johnson, 

2007; Johnson et al., 2020). 

Some evidence from previous research shows that learners’ communication about the 

participants in the discussion may hinder their mathematical activity (Heyd-Metzuyanim & 

Sfard, 2012). Studying the pair with an unequal interaction showed a peer learning session 

with ineffectual communication in which the students did not advance in their mathematics, 

errors were ignored and there was no meaningful discussion. The commognitive analysis 

showed how the mathematics was hindered in this case, aligning with studies positing that 

ineffectual communication in groups might also hinder learning (Nilsson & Ryve, 2010; 

Sfard & Kieran, 2001). Studying Hadar and Yaniv, a pair with a mostly egalitarian 

interaction, showed, by analyzing the communication channels employed in the pair’s 

interaction, that they were communicating coherently. This should support productive small 

group learning sessions, which needs coherent communication (Sfard & Kieran, 2001). 

However, although one of the learners benefited from the interaction, the other did not even 

though this pair was communicating coherently.  

Previous studies have shown that a commognitive conflict, where interlocutors think they are 

talking about the same thing, yet in fact are using different metarules, can hinder 

collaborative learning (Ben-Zvi & Sfard, 2007; Sfard, 2007b, 2008). These previous studies 

led me to seek for the roots of Hadar’s ineffective participation in the interaction in the 

discursive objects that the pair tended to. I did so with the aid of the analytical tools 

developed in Chapters 5 and 6, the DMT and the DDMT, which mapped the main challenges 

for the students of the workshop in terms of shifting and linking between subdiscourses. My 

analysis revealed that the students were discussing different objects from within different 

discourses and did indeed have a commognitive conflict between them. This led to 

difficulties in meta-level learning since the implicit metarules were not discussed, as was 

described by other literature (Ben-Zvi & Sfard, 2007; Chan & Sfard, 2020; Sfard, 2007b).  

The analysis of the mathematical activity of the egalitarian pair showed that while the 

collaborative learning episode was successful for object-level learning, it did not support 

meta-level learning. This conclusion aligns with former claims, made in the commognitive 

literature, that meta-level learning requires the support of an expert attuned to the implicit 

metarules that the students need to learn (Nachlieli & Elbaum-Cohen, 2021). Notably, in 

most of the previous commognitive studies about obstacles for successful peer interactions 

(e.g. Chan & Sfard, 2020; Heyd-Metzuyanim & Sfard, 2012; Sfard & Kieran, 2001) the 

interaction was not egalitarian. For example, Sfard and Kieran (2001) describe an interaction 

in which Ari, the more knowledgeable partner, does not attend to his partner Gur, who in 

order to save face does not persist in any of his questions. This conflation between affective 

issues and mathematizing may have led to the conclusion that peer interactions are mostly 

hindered by students not listening to each other. However, my analysis of Hadar and Yaniv’s 

interaction showed that even when the affective considerations of the interaction were 

optimal and supported learning, the implicit metarules of the mathematical discourse were 

not exposed. 
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The difficulty of exposing metarules in peer interaction is theorized in commognition by the 

idea that meta level learning requires, at least in its initial phases, ritual participation. This is 

due to students not being able to participate in a discourse about objects with which they are 

not yet familiar (Sfard, 2008). However, my analysis of the individual students showed that 

some students may arrive at opportunities for meta-level learning more ready than others. I 

found that one of the students, Yaniv, arrived at the workshop having already objectified the 

new mathematical object that was pertinent to the task (“set of vectors”). Thus, he was able to 

author narratives autonomously in the new coalesced discourse. Yaniv was seemingly on the 

cusp of explorative participation and the opportunity offered to him in the workshop 

advanced him. On the other hand, the other students, Hadar and Ben, who had not yet 

objectified the objects of the new discourse, benefitted only minimally from the opportunities 

offered by the discussion, and advanced somewhat their object-level narratives. The 

workshops afforded the students the opportunity for both object-level learning and meta-level 

learning. The students availed themselves of these opportunities in different degrees, 

depending on their different levels of adoption of the new discourse. 

The learning opportunities offered to the students in the small group learning sessions 

included object-level learning and the opportunity to practice newly adopted metarules. I 

found, similar to what was posited by Sfard (2008), that when a student has not yet completed 

the objectification process of the objects in the new discourse, their narratives consider 

objects from the old, familiar, subsumed subdiscourse. The analysis of one student, Hadar, 

showed how the metarules from the new subsuming discourse, about objects from that 

discourse, might be used idiosyncratically. Thus, the findings in this study can help to 

elaborate the commognitive framework by suggesting that the meta-level learning of object 

related metarules hinges upon objectification in subsumed discourses. Theoretically, this 

study adds to the commognitive theoretical framework by suggesting how the objectification 

process, meta-level learning, adopting new coalesced discourses and explorative participation 

may be connected. 

8.2 Conclusions 

Designing learner-centered workshops and examining an implementation of these in a 

university setting allowed me to consider the productiveness and suitability of incorporating 

these types of non-traditional teaching methods into lectures and tutorials in university 

mathematics. I found that the designed workshops afforded opportunities for both object-

level learning and meta-level learning, and specifically, gave the students the opportunity for 

explorative participation. This adds to the body of literature describing student centered 

teaching practices in tertiary mathematics which can benefit student learning (Griese & 

Kallweit, 2017; Ju & Kwon, 2007; Lahdenperä et al., 2019; Laursen et al., 2014; Laursen & 

Rasmussen, 2019). The whole class discussions offered the students opportunities for 

explorative participation. The examination of specific student’s learning processes in the 

small group sessions showed that these did not support learning for all of the students. 

Learner-centered teaching in elementary schools have been studied extensively to examine  

how to incorporate this tool productively and successfully in mathematics classrooms (Keefer 

et al., 2000; Nilsson & Ryve, 2010). The assorted aspects of learner-centered teaching needs 

a thorough examination to incorporate it  into university mathematical education in a 

meaningful and productive manner.  
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The first aspect is appropriate tasks. The tasks designed for these workshops had the potential 

for supporting explorative participation due to their capacity to provoke discussions, 

including compelling students to author realizations and links. This aligns with studies about 

important considerations for choosing tasks (e.g. Koichu & Zazkis, 2021; Tekkumru-Kisa et 

al., 2020), and extends those studies to an operational discussion of tasks that support 

explorative participation. 

The next aspect is the instructor’s role. The analysis of the workshops showed that the role of 

the instructor was crucial in supporting learning, especially for meta-level learning. This 

aligns with Michaels and colleagues (2008) suggestions for moderating meaningful 

mathematical discussions and extends the importance of the expert’s support for the 

mathematical content, and not only for the socio-mathematical norms.  

Another aspect is the mathematical content of the peer learning sessions. The analysis of the 

small group discussions showed that while collaborative learning can be productive, it is 

important to note what type of learning is required by the students. The peer learning sessions 

can be successful for object level learning. However, meta-level learning requires the support 

of an expert attuned to the implicit metarules that the students need to learn. Additionally, I 

found that successful peer learning was dependent on the compatibility of the trajectory of the 

objectification process of the group members. Participating in a peer discussion did not 

support the necessary meta-level shifts for students not advanced in the objectification 

process. This adds to the literature discussing the drawbacks to inquiry based and discussion-

based teaching, which posit that learning without an expert, in small groups, might be 

arbitrary, and not advance toward the curriculum’s goal (e.g. Vithal et al., 1995). 

The group dynamics of the peer learning sessions, and specifically the communication 

between the group members, also needs to be considered. This study showed a peer learning 

session with ineffectual communication in which the students did not advance in their 

mathematics, errors were ignored and there was no meaningful discussion. The analysis 

showed how the mathematics was hindered in this case, aligning with studies positing that 

ineffectual communication in groups might also hinder learning (Nilsson & Ryve, 2010; 

Sfard & Kieran, 2001).  

To conclude, this study showed that while inquiry-based teaching and collaborative learning 

can be productive, it is important to note the task, the instructor’s role, the type of learning 

required by the students and the interactions between group members. Thus, lesson design in 

learner-centered teaching should be attuned to the difference between object-level learning 

and meta-level learning, and the teaching methods should be suited to the type of learning 

required.  

8.3 Implications  
This study has practical, methodological and empirical implications. 

First, this project showed the feasibility of discussion-based linear algebra lessons and 

provided guiding principles for lesson design and implementation. The lesson plans and tasks 

designed and modified for the workshops in this project can be used by other instructors. The 

students’ continued attendance at the workshops showed that they were interested and willing 

to participate in such workshops, even when it was offered in addition to the other 

requirements of the course. In addition, utilizing the insights from this project, tasks can be 

developed for other topics in the undergraduate curriculum.  
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Methodologically, this project developed a tool for examining the potential of tasks, the 

DMT, and a tool for examining the implementation of such tasks, the DDMT. These tools 

give an operational method of evaluating tasks by mapping the mathematical objects 

embedded in tasks and the available discourses. The operational definition of the potential of 

tasks and the operational method of examining this can be used for tasks in other 

mathematical topics and in other levels of mathematical education. 

Empirically, this study showed the importance of noting the difference in object-level 

learning and meta-level learning. The peer learning sessions can be successful for object level 

learning. However, meta-level learning requires the support of an expert attuned to the 

implicit metarules that the students need to learn. This study also showed that differing levels 

of objectification can lead to potential commognitive conflicts among discursants. 

8.4 Suggestions for future studies 
This study opens up many interesting avenues of study. First, the DMT and DDMT could be 

studied as pedagogical tools for examining teaching and learning. The mapping tools 

developed for this study could be used to study other topics of university mathematics and 

other levels of mathematics education in similar manner. Additionally, the DMT could be 

used as a teaching tool in a classroom as a tool to explore mathematical objects. The students 

could be asked to draw a DMT for a certain object or an instructor could present a DMT to 

help the students visualize the connections between realizations and procedures.  There are 

many aspects that need to be considered if one chooses to incorporate a DMT into a 

classroom discussion. For example, at what point in the students’ learning trajectory should 

they be exposed to this tool and who should determine the different branches of the DMT.  

These intriguing possibilities need to be studied for suitability, applicability, benefits and 

drawbacks. 

Another direction that this study opens up is the understanding of mathematical discourses 

and subdiscourses in tertiary classroom and the connections that need to be drawn between 

them for students to become fluent in these new mathematical discourses. This study mapped 

the subdiscourses for several mathematical objects separately. The characteristics of these 

discourses and their connections to discourses in other mathematical topics, such as calculus 

or differential equations, could be explored. 

Finally, this study showed that commognitive conflicts can be due to different levels of 

objectification. This needs further study in different contexts, for example in K-12 

classrooms, or in other university level mathematics courses. Examining interactions through 

the objects being discussed by the discursants might support many new possible avenues of 

exploration and understanding.   

8.5 Limitations 
The findings of this study should be examined with several limitations in mind. First, the 

dataset was limited. The study focused on 7 specific tasks from workshops in a linear algebra 

course in a specific engineering institute. The workshops were ancillary to the course, and 

thus were not limited by mundane considerations, such as a course syllabus and time 

constraints. There are many other tasks and learning goals that need to be considered when 

designing a course that forms a mandatory part of the undergraduate curriculum. Yet, the 

conclusions from this study certainly inform understanding the more general picture of 

university mathematics education. 
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Another limitation that needs to be considered is the generalizability of the findings to other 

mathematical topics. Linear algebra is a mathematical field where the connections between 

different subdiscourses are explicitly stated as a goal of the course and there are many objects 

with links between them. In contrast, a course about differential equations tends to be more 

focused on procedures of finding solutions for systems of differential equations. Tasks in this 

type of course might not lend themselves to mapping by DMTs, nor would DDMTs map a 

discussion in this course. Thus, the findings of this study are limited to university courses of a 

certain type. However, the main themes of this analysis can be translated to other contexts. 

Mapping objects in all mathematical contexts can support exploring the learning processes 

and the objectification process that is inherent in learning mathematics at every level. 

Similarly, in all mathematical contexts there is a need to differentiate between object-level 

learning and meta-level learning.  

The examination of the in-class discussions was limited by the participants being selected by 

the acceptance process of the institute and had self-selected by choosing to participate in the 

workshops. That is, these students were self-motivated to engage in a mathematical 

discussion and had successfully completed previous mathematics classes. Thus, the sample of 

students studied in this study can certainly not be considered representative of the general 

population. Another limitation concerns the analysis of dyadic interactions, which was 

applied to only two pairs of students. There could, of course, be many other forms of 

interaction in the workshop that my analysis did not capture. Thus, any generalizations made 

from them need to be made with much caution.  

Finally, the analysis of the whole class discussions focused on the opportunities for 

participation that were offered to the students and the narratives to which the student were 

exposed. As in all large group learning sessions, this analysis does not infrom us of what 

individual students actually learned during these sessions. Additionally, the discourse of the 

classroom discussion was not analyzed, and so this study cannot infrom us about the 

processes and the teaching-learning interaction that occurred during these discussions. 

8.6 Reflections on my role as the instructor in the workshops 
In this study I functioned as a participant-observer by moderating the discussion sessions, 

teaching regular tutorial session in the course and analyzing the data. Tabach (2011) 

describes how the dual role of a researcher and a teacher can enhance both roles, yet one must 

be aware that a teacher-researcher’s first responsibility during class is to be a teacher. During 

the workshops I focused on the teaching role, yet I unconsciously noted incidents that I 

subsequently described in my teaching journal. Thus, the researcher role was also minimally 

active during the workshops. The analysis of the recorded data was done in the researcher 

role. This enhanced my teaching practices. Stephan and Rasmussen (2002) describe how the 

analysis of classroom mathematics influenced their instructional practices. I agree with them 

that it sharpened my awareness of aspects of the theoretical approach and attention to 

opportunities for fostering learning. Reflection on significant events while using learner-

centered methods in university mathematics classrooms supports the instructors (Nardi et al., 

2005). The research role of the project necessitated my reflection on my practice and thus 

supported my teaching role.   

Incorporating learner-centered teaching practices into habitual teaching methods is not 

straightforward. University mathematics educators, who agree with the importance of such 

teaching practices, report challenges to incorporating these methods in their classrooms. 
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Stewart and colleagues (2019) describe a mathematician who reverts to standard lecturing 

practices, while encouraging participation, due to time constraints and the need for progress 

according to the syllabus. These and other institutional requirements were also the source of 

tension for instructors altering their teaching practices to learner-centered in Mesa and 

colleagues’ study (2020). I found that, initially, using these methods was indeed not 

straightforward.  

Moderating a discussion-based workshop is very different from teaching traditional tutorial 

classes. Although my tutorial teaching style included short discussions and in-depth 

solutions, it is still very different from leading a workshop. During the small group phase of 

the workshops, the students worked by themselves, and I answered questions. This was 

difficult for me, since I felt that I was not teaching during that phase, as I was not being 

active. In addition, when students struggle it is much easier to just give them the answer, 

rather than pointing them in the right direction and letting them discover the answer 

themselves. There was a constant conflict between these, yet with more experience I found it 

easier to find the balance. I attempted to provide support for the students, while not giving 

them the final answer. Additionally, I found that answering students’ questions while they 

were involved in struggling with the mathematics allowed me to support them in a more 

personalized manner.  

 Another difficulty for me was the absence of an exact structure and discussions planned in 

specific detail. The whole class discussion in the workshop was based on the questions that 

the students asked and the examples they constructed. Thus, although the lesson plans, 

written in advance, planned general ideas and families of examples, the list of these could not 

be exhaustive. The students kept coming up with new mistakes, new narratives and new 

examples. The lesson plans included difficulties students might encounter, some ways of 

solving the problems, and possible counter examples. However, some of the discussions were 

tangential to the main mathematical idea and some were based on examples and claims 

authored by the students. Before each workshop, I felt the stress of going into a classroom 

without feeling well prepared. I hoped I would be able to answer questions, think fast enough 

of a counter example to their claims, remember all the theorems and definitions, not get 

confused and not make mistakes. This is a worry teachers face when teaching for explorative 

particiaption (Heyd-Metzuyanim et al., 2019). However, with more experience of this type of 

teaching and with the support of experts with whom I could reflect on what happened during 

the discussions, I became more comfortable and less worried about possible issues and 

mistakes. 

There was one workshop in which I did become confused and made a mistake on the board. 

In the workshop about linear transformations, I modified an example of a student and asked 

what changed in the properties of the linear transformation. A lively, meaningful discussion 

about the properties of linear transformations defined on bases ensued. Then, a student asked 

if the property of linearity holds for linear transformations constructed on a basis. While 

proving this on the board, with input from the class, I realized that the proof we were 

constructing was circular. We were using linearity to show that the transformation was linear. 

I explained to the class why there was a problem in the proof. We then discussed what needed 

to be proved, and what was given. First, I told the class that I would get back to them with the 

proof, and meanwhile we will just use the theorem. I was not comfortable with this but did 

not want to waste more time on it. Then I remembered that the theorem assumes linearity, 
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and thus it cannot be proved. I explained this to the class, and the discussion continued with 

other topics.  

At first, I felt terrible. I made a mathematical mistake on the board, and it was not an 

arithmetic error (which I do all the time). This was a metarule of logic and proving – we were 

trying to prove what needed to be assumed. I wasted valuable class time on something that 

did not advance the students. Watching the recording of this and receiving feedback on this 

incident from a mathematical pedagogical expert showed this incident in a different light. The 

students experienced doing real mathematics – trying things out, attempting other methods, 

getting confused, figuring out what was given, and deciding what needs to be proved. This 

was a good learning opportunity for the students during this episode, and I hope this 

advanced their learning. I learned that even if the worst happens – and I make mistakes - it 

can be used as an opportunity for teaching and learning. After I worked through it, I realized 

maybe it was not as terrible as I experienced it in real time. In addition, after this I was less 

stressed going into class. The worst had happened, and I survived, the students learned, and 

they were eager for the next question. But this was a stressful lesson for a teacher to learn.  

The teaching aspect of the project was different from what I was used to, yet it was 

challenging to fathom how to adjust my teaching patterns to suit the context. It was exciting 

to learn new things and meaningful for me and the students.  
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10 Appendices 

10.1 Appendix A - Lesson Plans 

10.1.1 Complex Numbers (Week 2) 

Lesson Goal: The question explores logical implications between statements using complex 

numbers. While searching for examples for which the various statements are true, the 

students will practice using the definitions and representations of complex numbers. In 

addition, the connections between the different representations of complex numbers will be 

reinforced through using both representations and discussions about the complex numbers, 

thus bolstering the objectifying of the complex field and its realizations. The question also 

examines the logic involved, by discussing when two statements are equivalent, when one 

implies the other and when there is no connection between them.  

 

Introduction: (7 minutes) Reminding the students of the basic definitions that they saw in 

class.  

 

Definitions: 

1. Algebraic representation (a+ib), Trigonometric representation (r · cis θ), Geometric 

representation (2-dimensional plane) 

2. Im(z), Re(z), 𝑧, |z|, arg(z) 

 

Question: (15 minutes) The students will work in small study groups of 2-3 students in each 

group. The students will choose their own group.  

 

Let z1, z2 ϵ  ℂ  such that z1, z2 ≠ 0. 

 

1) Let 𝑧1 ⋅ 𝑧2 ∈ ℝ. Which of the following statements is always true? Which statement is 

never true? Which statement holds for specific cases of z1, z2 ϵℂ? 

 

a) z1 = 𝑧2 

b) z1 = α · z2   ( α ϵ ℝ ) 

c) 𝑧1
2 ⋅ 𝑧2

2 = 1 

d) Im (z1) = 0 

 

2) Give a statement for which the following is true: 
𝑧1

𝑧2
∈ 𝑅   ⇔ (statement) 

 

Solutions: 

1) z1 ⋅ z2 ∈ ℝ    

a) Example of z1 ⋅ z2 ∈ ℝ  and (a) holds: 

z1 = 1 + i,  z2 = 1 − i = z1  and (1 + i) ⋅ (1 − i) = |z1|
2 = 2 ∈ ℝ 

 

Example of z1 ⋅ z2 ∈ ℝ  and (a) does not hold: 

z1 = 1 + i,  z2 = 3 − 3i = 3 ⋅ z1 ≠ z1 and (1 + i) ⋅ (3 − 3i) = 6 = 3 ⋅ |z1|
2 ∈ ℝ 

 

b) Example of z1 ⋅ z2 ∈ ℝ and (b) holds: 

z1 = i,  z2 = 2i,  z1 =
1

2
⋅ z2,

1

2
∈ R and z1 ⋅ z2 = −2 ∈ ℝ 

  

Example of z1 ⋅ z2 ∈ ℝ and (b) does not hold: 



110 
 

z1 = 1 + i, z2 = 2 − 2i, z1 ≠ α ⋅ z2,  α ∈ ℝ  and 

 z1 ⋅ z2 = (1 + i) ⋅ 2 ⋅ (1 − i) = 2 ⋅ |1 + i|2 = 4 ∈ ℝ 

 

c) Example of z1 ⋅ z2 ∈ ℝ and (c) holds: 

𝑧1 = i,  𝑧2 = −i,  𝑧1
2 ⋅ 𝑧2

2 = 𝑖2 ⋅ (−𝑖)2 = (−1) ⋅ (−1) = 1 and 𝑧1 ⋅ 𝑧2 = 1 ∈ ℝ 

 

Example of 𝑧1 ⋅ 𝑧2 ∈ ℝ and (c) does not hold: 

𝑧1 = 𝑖, 𝑧2 = 3𝑖, 𝑧1
2 ⋅ 𝑧2

2 = 𝑖2 ⋅ (3𝑖)2 = (−1) ⋅ (−9) ≠ 1 and 𝑧1 ⋅ 𝑧2 = −3 ∈ ℝ 

 

      d) Example of 𝑧1 ⋅ 𝑧2 ∈  and (d) holds: 

 

 1 1z = , 2 2z =  ,  1 2 1 2 2z z =  =    and 1Im( ) 0z =  

 

Example of 1 2z z   and (d) does not hold: 

 1z i= , 2z i=  and  1 2 1z z i i =  = −   but  1Im( ) 1 0z =   

 

2) Statements that are equivalent to 
1

2

z

z
 : 

Geometric representation: 

1 1 1

2 2 2

z rcis

z r cis




     

1 1
1 2 1 2

2 2

( ) Im( ( )) 0
r r

cis cis
r r

    −    − =   

1 2 1 2sin( ) 0 ,k k    − =  − =    

1 2 1 2 2 1or or        = = + = +  

1 2 1,2 2,1( ) ( ) or ( ) ( )arg z arg z arg z arg z = = +  

 

 Algebraic representation: 

1 1 2 1 1 2 2

2 2 2

2 2 2 2

( ) ( )

| |

z z z a ib a ib

z z a b

 +  −
     

+
 

1 2 1 2 2 1 1 2( ) ( )a a bb i a b a b+ + −    

2 1 1 2 0a b a b− =   

 If 1 2, 0a a    
2 1

2 1

b b

a a
=    arg? ? geometric? 

 If 1 10 0a b=    since 1 0z   and then 2 1 1 2 0a b a b− =   

            2 1 20 0a b b=  =  which means 1 1 2 2,z b i z b i=  =   

and so in this case ( 1 0a = ) 
1 1 1

2 2 2

z b i b

z b i b


= = 


. 

Connection between representations: 

• 1 1
1

1

( )
b

arg z tg
a

−  
=  

 
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• 1 2 1 2 1 2( ) ( ) ortg tg k      = −  + = = −  

 

• Drawing the numbers on a Complex plane 

 

 

General discussion (15 minutes) The students will be asked to present on the board: 

 

1) Examples of complex numbers for which the statements are true and to show this. 

2) Examples of complex numbers for which the statements are false and to show this. 

3) Discussion are any of the given statements equivalent to 1 2z z  . 

4) Examples of statements that are equivalent to 
1

2

z

z
 . 

 

The connections between the different representations of complex numbers will be indicated. 

The students can be asked if the solutions are the same and how do they connect. 

 

Questions for further discussion 

 

These questions can also be used for students who need additional challenges during the 

small group period. These questions further explore the same concepts as above, while 

allowing the students to be more creative. If there is extra time in class, they can be discussed 

with the whole class.  

 

1) Let 
0

( )
n

i

i

i

p x a x
=

=  be a polynomial of degree n  such that ia  . 

 

Prove that if n  is odd then ( )p x  has a real root.  

 

2) Is the other direction true? Is n  odd   ( )p x  has a real root? 

 

 

Conclusion (5 minutes) The connections between the different representations of Complex 

numbers will be reified, the Complex field and its elements as a mathematical object will be 

discussed. In addition, when two statements are equivalent, when one can be induced from 

the other but not the other way will be mentioned. 
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10.1.2 Matrices (Week 3) 

Lesson Goal: The question explores how the rows of C influence the rows of CD, and how 

the columns of D influence the columns of CD. The question also demonstrates that the 

opposite does not hold, that is that the columns of C do not affect the columns of CD and the 

rows of D  do not affect the rows of CD. 

In addition, the question practices manipulating matrices in different ways - as arrays of 

numbers, as sets of rows, n n  elements and as a mathematical objects. The connections 

between these different methods of representing matrices furthers the objectification of the 

concept of matrices.  

Introduction: (7 minutes) Reminding the students of the basic definitions that they saw in 

class.  

Definitions: 

•  45A  is element in fourth row, and fifth column 

• Matrix Multiplication: 
1

n

ij ik kj

k

AB A B
=

=  

•  
t

ij jiA A= , Symmetric and Anti-symmetric matrices 

 

Question: (15 minutes) The students will work in small study groups of 2-3 students in each 

group. The students will choose their own group.  

Let C be a matrix whose third column is all zero's. 

Let D be a matrix whose second row is all zero's. 

Examine CD and DC. Do they inherit any characteristics from C and D? That is, is the third 

column all zero's? Is the second row all zero's? 

 

Solution Method Possible Difficulties Advancing Questions 

Trying on numerical examples 

C D =

1 2 0 1 1 2 2 1

2 1 0 2 0 0 0 0

1 2 0 1 2 1 1 1

1 2 0 1 1 1 1 2

   
   
   
   
   
   

( )*=  

 

Finding minimal 

dimensions 

for the question to be well 

defined. 

 

Multiplying matrices wrong 

 

 

Columns and rows mixed 

up 

 

Order of multiplication 

wrong 

 

 

 

 

How do you multiply 

matrices? 

 

Where is column 3? 

 

Is CD DC= ? 
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D C =

1 2 2 1 1 2 0 1

0 0 0 0 2 1 0 2

2 1 1 1 1 2 0 1

1 1 1 2 1 2 0 1

   
   
   
   
   
   

8 10 0 8

0 0 0 0

5 9 0 6

6 9 0 6

 
 
 =
 
 
 

 

Characterization of matrix  

3 0ii C =  

2 0jj D =  

 

 

Wrong definition 

 

Order wrong 

 

Write out an example 

 

Show me element 4,3 of the 

matrix 

Picture   

Calculating elements 

2 2

1

( )
n

j k kj

k

CD C D
=

=  

  

 

  

General discussion (15 minutes) The students will be asked to present their solution on the 

board in the following order: 

1. Some worked examples 

2. Picture 

3. Calculating elements 

4. General matrix 

 

This order follows the order that the students' understanding of the concept usually takes, and 

so builds on their previous understanding of concrete objects - arrays of numbers - to scaffold 

their understanding of a matrix as an object that can be manipulated as a unit. 

The connections between the different representations will be pointed out. The students can 

be asked if the solutions are the same and how do they connect. 

Questions for further discussion (8 minutes) 

These questions can also be used for students who need additional challenges during the 

small group period. These questions further explore the same concepts as above, while 

allowing the students to be more creative. If there is no time for these in class, they can be 

given as questions for the students to think about on their own.  

1. If only one of the matrices has such a characteristic, does the product still have it? 

The question is given that both C  and D  have certain traits, is this necessary? This can lead 

to the discussion what is the minimal conditions necessary, so that a zero appears in the 

product matrix. If only one element in the matrix is zero, what effect will this have on the 
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product? Can they construct two matrices with no zero entries such that the product will have 

a row of zeros? 

2. What other such traits are conserved by matrix multiplication? 

This question is also a review of other new concepts, such as symmetric matrices, anti-

symmetric matrices, scalar matrices. The students can also define their own traits, such as a 

row of all ones, all the elements in the given matrices are positive, all the elements are whole 

numbers.  

Conclusion (5 minutes) The connections between the elements of the matrix, the matrix as 

an array and a matrix as a mathematical object will be pointed out. 
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10.1.3 Systems of Linear Equations (SLE) (Week 4) 

 

Lesson Goal: The question explores Systems of Linear Equations. These systems can be 

represented as a list of equations, as a matrix and as a list of constraints on the variables. The 

question asks for examples of systems, thus the student will explore the connections between 

these different representations and this will support objectification of SLE's.  

 

SLE is an obvious use of matrices, and students appreciate the matrices they just learned 

when they see it as a useful and powerful tool. The set of solutions of a homogenous system 

is a vector space, and thus while learning vector spaces the students have a tangible example 

to project the concept on. 

 

 Introduction: (7 minutes) Reminding the students of the basic definitions that they saw in 

class.  

Definitions: 

• SLE is a system of n  linear equations with m  variables. 

• A SLE can be written in matrix form A X b = , 
n mA F  , 

1

2

m

x

x
X

x

 
 
 =
 
 
 

. 

• A SLE has no solution iff ( | ) ( )r A b r A  ;  

A SLE has exactly one solution iff ( ) ( | )r A r A b m= =  ; 

A SLE has infinite solutions iff ( ) ( | )r A r A b m=  . 

 

Question: (15 minutes) The students will work in small study groups of 2-3 students in each 

group. The students will choose their own group.  

 

2 3 4x y z− + =  is a linear equation with 3 variables. 

 

a) Give a system of linear equations, including the one above, such that there will be no 

solution to the system; there will be exactly one solution to the system; there will be 

an infinite number of solutions to the system. 

b) Give a system of linear equations, including the one above, such that (1,2,8) will be a 

solution to the system AND there will be exactly one solution to the system; AND 

there will be an infinite number of solutions to the system. 

 

 Possible Solution 

 

No solution:  

(a) 
2 3 4

2 3 5

x y z

x y z

− + =


− + =
  

For (b) there is no such system, since if there exists a solution, than there is not a case 

of no solution. 

 

Possible difficulty: Confusing single solution, does not exist any other solution, with no 

solution, does not exist any solution at all 

Advancing Question: How many solutions are there for system? 
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Single solution:  

The following matrix has a rank of 3, like the number of variables, so the system it represents 

has a single solution. 

 

(a) 

2 3 1

0 1 0

0 0 1

− 
 
 
 
 

 

 

The system represented is 

2 3 4

0

0

x y z

y

z

− + =


=
 =

 

 

For (b) we first check that (1,2,8) is a solution of the equation given : 2 (1) 3 (2) (8) 4 −  + =  

 It is. 

 

Then we build 2 more equations that this is the only solution possible: 2y =  and 8z = . If we 

do not give two more equations, than there will be more variables than equations and we can 

find more than one solution. A less elegant solution : 10y z+ =  and 9x z+ = . There are 3 

constraints on the variables and the only solution is the one given.  

 

Possible difficulty: Giving 3 equations when they are dependent. 

Advancing question: Ask student to solve system and then discuss why the 3 equations are 

the same information (multiple of each other etc.) 

 

Infinite solutions 

2 3 4x y z− + =  OR 
2 3 4

4 6 2 8

x y z

x y z

− + =


− + =
 OR 

2 3 4

2 3 4

x y z

x y z

− + =

− + − = −

 

 

For (b), since we saw from above that (1,2,8) is a solution, than any system given in (a) is 

also a solution for (b). 

 

Possible difficulty: Constructing a new system could lead to arithmetic errors or to 

contradictions, which would give no solutions. 

Advancing Question: What constraints are necessary to have infinite solutions? 

 

 

General discussion (15 minutes) The students will be asked to present their solution on the 

board for each case for (a) and for (b). 

 

1) No solution 

2) Single solution 

3) Infinite solutions 

 

 

The connections between the different representations will be pointed out. The students can 

be asked if the solutions are the same and how do they connect. 
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Questions for further discussion (8 minutes) 

 

These questions can also be used for students who need additional challenges during the 

small group period. These questions further explore the same concepts as above, while 

allowing the students to be more creative. If there is no time for these in class, they can be 

given as questions for the students to think about on their own.  

 

1) What is the largest number of equations that can be used as an example that answers 

the question? 

2) What is the smallest number of equations that can be used as an example that answers 

the question? 

3) Ask the students for a set of constraints on the vectors, for example 

{( ,2 ,3 ) | }x x x x  and ask the students to build a system that this is the solution. 

 

 

Conclusion (5 minutes) The connections between the matrix representing the SLE and the 

equations will be stressed. In addition, the rank of the matrix gives an indication of how many 

equations are the minimum necessary for solving the question.  
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10.1.4 Subspace (Week 6) 

 

Lesson Goal: The question examines subspaces of 
2 3

. In order to answer the question, the 

students should build examples of subspaces that fulfil the requirement, and thus they have an 

opportunity to objectify subspaces and the connections between them. The question focuses 

on a specific Vector Space in order to scaffold the objectifying of subspaces,  

and the question also asks for a maximal value of n , thus answering the question should lead 

to a discussion of when examples are a sufficient proof of a concept and how can a maximal 

value be proved? Does existence of an example for a specific value of n  suffice for a proof? 

 

 Introduction: (7 minutes) Reminding the students of the basic definitions that they saw in 

class.  

 

Definitions: 

• A  vector space is a set of vectors and a field of scalars for whom the list of 10 

properties hold. 

To prove a set of vectors, with scalars, is a V.S. 10 properties need to be examined. 

• A subspace is a non-empty subset of vectors that is closed under addition and scalar 

multiplication, for the same field. 

To prove a subset of vectors is a subspace 3 properties need to be examined. (The three can 

be combined into 2.)  

• Let ,U W V  be subspaces of a vector space V . Then U W  and U W+  are also 

subspaces. U W  is a subspace iff U W  or W U . 

 

Question: (15 minutes) The students will work in small study groups of 2-3 students in each 

group. The students will choose their own group.  

 

What is the greatest value of n , such that there exist subspaces iW , 1 i n   of 
2 3

 such 

that: 

 1 2 1n nW W W W−  

 

 Solution: 

Example of subspaces: 

 

Example 1: 

 
2 3

0 0 0
,

0 0 0

a a a a a a
a a b

a a a b b b


            

           
             

 

This example is for 4n = , it can be expanded for a greater value of n . 

 

Example 2: 

 

 
0 0 0 0 0

0 0 0 0 0 0

a
a

      
      

       
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2 3

0
, , , , , ,

0 0 0

a b a b c
a b a b c d e f

d e f


         

  =      
         

 

In this example $n=7$.  

 

General discussion (15 minutes)  

The students will be asked to present their solution on the board. 

For each example the students give, they will be asked to prove on the board that each iW  is a 

subspace and that they are not equal. 

1. How does choosing a different order of putting in parameters change the Example 2?  

2. How can Example 1 be expanded?  

3. Given the Theorem: For subspaces ,S T V : 

 dim dimTS T S   

How does this effect the answer to the question. 

 

Questions for further discussion 

These questions can also be used for students who need additional challenges during the 

small group period. These questions further explore the same concepts as above, while 

allowing the students to be more creative. If there is no time for these in class, they can be 

given as questions for the students to think about on their own.  

 

1. Using the 7 different subspaces from above, how many different subspaces can be 

constructed using intersection, union and sum? 

2. For which k  is 1k k nW W W++ = ?  

3. Give example of ,U W V  subspaces, such that U W V+ = . 

4. Do there exist subspaces for which the sum is direct 1k k nW W W+ =  ? 

5. Construct t  subspaces of 
2 3

 such that 
2 3

1 2 tW W W    = . 

6. What is the maximal /minimal t ?  

 

Possible Solutions 

1. If {0}iW =  or iW V= , then union and intersection is: 

 j jW V W = , {0} {0}jW  = ,  {0}j jW W = ,  jW V V =  

If i jW W  then: 

i j iW W W =  and i j jW W W =   

So no new subspaces will be constructed. 

2. If i jW W  then: i j jW W W+ = , so only for $k=6$ is this statement true. 

3. For , ,
a b c

U a b c
a b c

   
=   

   
 and , ,

0 0 0

a b c
W a b c

   
=   

   
 

U W V+ =  and since {0}U W =  then  (4) U W V =  

5. 1

0 0

0 0 0

a
U a

   
=   

   
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2

0 0

0 0 0

a
U a

   
=   

   
 

3

0 0

0 0 0

a
U a

   
=   

   
 

4

0 0 0

0 0
U a

a

   
=   

   
 

5

0 0 0

0 0
U a

a

   
=   

   
 

6

0 0 0

0 0
U a

a

   
=   

   
 

7 {0}U =  

 

6. Maximal t: t = 7  

Proof: Using Dimension theorem: ( ) ( )dim U W dimU dimW dim U W+ = + −   

 If sum is direct, then ( ) 0dim U W =  

Minimal t: (t = 1 fulfils conditions, but is not interesting) t=2: 

Proof: {0}V V =  

 Using {0} ,W U V  : 

, ,
0 0 0

a b c
U a b c

   
=   

   
  and 

0 0 0
, ,W a b c

a b c

   
=   

   
 

{0}U W =  and U W V+ =  so U W V =  

 

 

Conclusion (5 minutes)  

The connections between the dimension of the vector space and the possible dimensions of 

the subspaces will be discussed. The concept of subspaces can be generalized to a general 

vector space V  of dimension n . Objectifying the concrete vector space (matrices of a specific 

order) should expedite the objectifying of a theoretical general vector space. 
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10.1.5 Linear Dependence (Week 7) 

Lesson Goal: The question explores linear dependence between vectors and the spanning 

space of a set of vectors. Constructing examples allows students to investigate when vectors 

are linearly dependent, which promotes understanding of the connection between the linear 

span and a minimal spanning set. This is a necessary foundation for understanding basis and 

dimension of a subspace, which is the next topic in the course.  

In addition, solving the question utilizes counter examples to prove a statement. 

Understanding the logic when a counter example constitutes a proof and when it is not 

sufficient is difficult for students. The discussion about the answer to the question could be 

guided to discussions about what is a sufficient proof? When is a statement always true, when 

is it sometimes true, and when is it never true? and when is a counter example sufficient.  

The typical example given as an answer is from n , as this is what the term "vectors" 

denominated in high school. If during the discussion no other examples are given, then 

advancing questions will be asked in order that examples of matrices, vectors and polynomial 

vectors will be introduced. Manipulating elements from these vector spaces, i.e. matrices and 

polynomials, will help students objectify those elements as vectors also. 

Complex fields add another level of complexity to the question, thus are left for the end of the 

discussion. If a student has difficulty manipulating real matrices, then complicating it with 

complex numbers does not help them. However, after the concept of matrices is objectified, 

using complex numbers as entries in the array is straightforward. 

Introduction: (5 minutes) Reminding the students of the basic definitions that they saw in 

class.  

Definitions: 

A set of vectors 1{ , , }nv v V   is linearly dependent over F  (a field of scalars) in V  (a 

vector space), if there exist scalars 1 2{ , , , }n   , not all zero, such that 
1

0
n

i i

i

v
=

 = .  

If the only scalars for which 
1

0
n

i i

i

v
=

 =  are 1 2 0n  = = = = , then the vectors are 

linearly independent. 

 

Question: (15 minutes) The students will work in small study groups of 2-3 students in each 

group. The students will choose their own group.  

 

V  is a vector space over the field F . Are the following statements True or False?  

If a statement is true, prove it. If a statement is false, give a numerical counter example. 

1.  1 2 3{ , , }u u u V  is a linearly independent set and 4u V , then the set  

1 2 3 4{ , , , }u u u u  is linearly independent. 
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2.  1 2 3{ , , }u u u V  is a linearly dependent set and 4u V , then the set  

1 2 3 4{ , , , }u u u u  is linearly dependent. 

3. If 1 2 6{ , , }u u u V   is a linearly dependent set, then 1 5 2 6{ ,..., } { ,..., }Sp u u Sp u u= .  

4. If 1 2 6{ , , }u u u V   is a linearly independent set, then 1 5 2 6{ ,..., } { ,..., }Sp u u Sp u u=  

 

Possible Solution 

1. False. Counter example: For 4V = , then 

1 2 3(1,0,0,0), (0,1,0,0), (0,0,1,0)u u u= = =  are linearly independent,  

4 (1,1,1,0)u V=   and 1 2 3 4{ , , , }u u u u  is a linearly dependent set. 

Using the definition : choose 1 2 3 41, 1, 1, 1   = = = = − ,  

Or using a result that 4u  is a linear combination of the other 3. 

Difficulties: Confusing definition of linear independence and dependence. 

Advancing question: What is the definition? 

Note: Exists 4u  so that 1 2 3 4{ , , , }u u u u  is a linearly independent set, for example 

4 (0,0,0,1)u = . The above is a counter example, even though there exists examples 

when it is true. 

2. True.  

Proof: If 1 2 3{ , , }u u u  is linearly dependent, then there exist 1 2 3, ,    not all zero, such 

that 1 1 2 2 3 3 0u u u   +  +  = . Let 4 0 = , and then there exist 1 2 3 4, , ,    , not all 

zero, such that 1 1 2 2 3 3 4 4 0u u u u    +  +  +  = .  

That is : 1 2 3 4{ , , , }u u u u  is a linearly dependent set. 

Difficulties: Confusing definition of linear independence and dependence. 

Advancing question: What is the definition? 

 

3. Example for yes: 

{(1,0,0), (0,1,0), (2,0,0)}  a linearly dependent set 

1 1{ ,..., } {(1,0,0),(0,1,0)} {( , ,0) | , }nSp u u Sp x y x y− = =   

2{ ,..., } {(0,1,0),(2,0,0)} {(2 , ,0) | , }nSp u u Sp t y t y= =  = {( , ,0) | , }x y x y  

Example for no: 

{(1,0,0), (2,0,0), (0,1,0)}  a linearly dependent set 

1 1{ ,..., } {(1,0,0),(2,0,0)} {( 2 ,0,0) | , } {( ,0,0) | }nSp u u Sp x y x y x x− = = +  =   

2{ ,..., } {(2,0,0),(0,1,0)} {(2 , ,0) | , } {( , ,0) | , }nSp u u Sp x y x y t y t y= =  =   
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1 5 2 6{ ,..., } { ,..., }Sp u u Sp u u  since 1 5(1,2,0) { ,..., }Sp u u  but 2 6(1,2,0) { ,..., }Sp u u  

So statement is false, since exists a counter example. 

However, there exists examples when the statement is true. 

4. False, Counter example: 

{(1,0,0), (0,1,0), (0,0,1)}  a linearly independent set 

1 1{ ,..., } {(1,0,0),(0,1,0)} {( , ,0) | , }nSp u u Sp x y x y− = =   

2{ ,..., } {(0,1,0),(0,0,1)} {(0, , ) | , }nSp u u Sp x y x y= =   

1 5 2 6{ ,..., } { ,..., }Sp u u Sp u u  

Proof that it is never true, that is always 1 5 2 6{ ,..., } { ,..., }Sp u u Sp u u : 

Let 1 2{ , , }nu u u V   be a linearly  independent set, such that 1 1 2{ ,..., } { ,..., }n nSp u u Sp u u− = . 

Then 1 1{ ,..., }n nu Sp u u − , so there exist scalars 1 1, , n  −  such that 
1

1

n

n i i

i

u v
−

=

=   

1 2{ , , }nu u u  is linearly independent, so 1 20 { , , }nu u u  , that means 0nu  , so 

not all i , 1 1i n  −  are zero. 

Thus, 
1

1

0
n

n i i

i

u v
−

=

− +  = , where not all the scalars are zero, then 1{ , , }nu u  is a linear 

dependent set, which is a contradiction to the given.  

So, 1 1 2{ ,..., } { ,..., }n nSp u u Sp u u−   

General discussion (15 minutes) The students will be asked to present their examples on the 

board in the following order: 

1. n  

2.  n n  

3.  [ ]n x  

This order starts with the familiar vectors and then shows other vector spaces.  

The connections between the different vector spaces will be pointed out. The students can be 

asked if the solutions are the same and how do they connect. 

 

Questions for further discussion} (10 minutes) 

These questions can also be used for students who need additional challenges during the 

small group period. These questions further explore the same concepts as above, while 



124 
 

allowing the students to be more creative. If there is no time for these in class, they can be 

given as questions for the students to think about on their own.  

1. What if 3V = ? Will (1) and (2) change? 

2. For which V  will (3) and (4) change?  

3. Examples utilizing complex numbers: 

i) For 3 3V =  give an example of vectors for whom the statement is true and when 

the statement is false.  

ii) For 
1

1 1 0[ ] { | }n n

n n n iV x a x a x a x a a−

−= = + + + +   

 

 Conclusion (5 minutes) 

We will review the main concepts: 

1) A counter example proves that the opposite statement is true, but does not prove that the 

statement is always false. 

2) An example does not prove a statement is always true. 

3) Linear span of different sets of vectors can be equal. 
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10.1.6 Linear Transformations (Week 10 or 11) 

 

Lesson Goal: This question examines the relationship between a linear transformation and the 

dimension of its kernel. Constructing examples of transformations that conform to the 

definition given illustrates this for the student.  

 

Linear transformations can be defined in various ways, and thus the question can be solved 

using any of the definitions. However, it is simpler to use the appropriate definition for the 

different parts. This question allows the student to consider which method is more efficient 

for use, and highlights the connections between the different definitions. 

 

Introduction: (7 minutes)  

Reminding the students of the basic definitions that they saw in class.  

Definitions: 

1. 𝑇: 𝑉 → 𝑊, where V and W are vector spaces, is a Linear Transformation if  

∀𝑣 , 𝑤⃗⃗ ∈ 𝑉 ,  ∀α ∈ 𝐹  𝑇(α ⋅ 𝑣 + 𝑤⃗⃗ ) = α ⋅ 𝑇(𝑣 ) + 𝑇(𝑤⃗⃗ ) 

2. Ker (T) = {𝑣  ϵ V | T(v) = 0⃗  } 

3. Im(T) = { T(𝑣 ) ϵ W  |  𝑣  ϵ V }  

 

Question: (15 minutes) 

 The students will work in small study groups of 2-3 students in each group. The students will 

choose their own group.  

 

Question: 

Let T: ℝ3→ℝ3  be a linear transformation such that T(1,2,3) = (0,0,0)  

and T is not the zero transformation. 

1. Give an example of such a T such that dimKer T = 0, if there exists such a 

transformation. Find a basis for Ker T and a basis for Im T. 

2. Give an example of such a T such that dim Ker T = 1, if there exists such a 

transformation. Find a basis for Ker T and a basis for Im T. 

3. Give an example of such a T such that dim Ker T = 2, if there exists such a 

transformation. Find a basis for Ker T and a basis for Im T. 

4. Give an example of such a T such that dim Ker T = 3, if there exists such a 

transformation. Find a basis for Ker T and a basis for Im T. 

 

Possible Solution 

1. (1,2,3) is in Ker T, so dim Ker T ≥ 1. Does not exist such a T. 

2. Complete {(1,2,3)} to a basis for ℝ3 : {(1,2,3),(0,1,0),(0,0,1)} 

Define:  

T(1,2,3) = (0,0,0) 

T(0,1,0) = (1,0,0) 

T(0,0,1) = (0,1,0) 

 

Thus T(x,y,z) = T((x) · (1,2,3) + (y-2x) · (0,1,0) + (z-3x)  · (0,0,1)) = 

= (x) · (0,0,0)+(y-2x) · (1,0,0)+(z-3x) · (0,1,0) = (y-2x,z-3x,0) 

BKerT = {(1,2,3)} so dim Ker T = 1     

 BIm T = {(1,0,0) , (0,1,0)} so dim Im T = 2  

Using Solution method: Spanning set for Im T is {T(v1), T(v2),T(v3)} where  {v1, v2, v3} is a 

basis. 

dim Ker T + dim Im T = dim V = dim ℝ3 
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3. Complete to a basis and define: 

T(1,2,3) = (0,0,0) 

T(0,1,0) = (0,0,0) 

T(0,0,1) = (1,1,1) 

 

Thus T(x,y,z) = T((x) · (1,2,3) + (y-2x) · (0,1,0) + (z-3x)  · (0,0,1)) = 

= (x) · (0,0,0) + (y-2x) · (0,0,0) + (z-3x) · (1,1,1) = (z-3x,z-3x,z-3x) 

 

 

BKerT = {(1,2,3), (0,1,0)} so dim Ker T = 2 

BIm T = {(1,1,1)} so dim Im T =1 

 

Using Solution Method: Im T = {(z-3x, z-3x,z-3x) | z,x ϵ ℝ}= {(z-3x) · (1,1,1) | z-3x ϵ ℝ } = 

{α· (1,1,1) | α ϵ ℝ } = Sp{(1,1,1)} so BIm T= {(1,1,1)} since a single spanning vector is 

linearly independent. 

 

4. If dimKer T = 3  then dim Im T = 0, so T = 0. However, it is given that T is not the 

zero transformation. So such a T does not exist. 

OR  

If dim Ker T = 3 Then Ker T is a subspace of ℝ3  with dimension 3, so Ker T = ℝ3,  

which means that T is the zero transformation.  

 

 

Part of Solution Possible Difficulties Advancing Questions 

Completing to a basis of ℝ3 

{(1,2,3) , (0,1,0) , (0,0,1)} 

Choosing a linear dependent 

set 

Why is it a basis? 

When is a set a basis? 

 Choosing non-spanning set What is the general element  

of ℝ3 ? 

 Not using a basis to define T ** 

Defining T on this basis Not linear What is T(0,0,0) or image of 

sum of some vectors? 

 Does not fulfil condition of 

question 

What is T(1,2,3)? 

 Dimension of Ker T is 

wrong 

Which vectors are in Ker T? 

Finding general element Finding scalars  

Finding bases   

Using Dimension Theorem 

to prove 3 not possible 

 What is Im T, if T is zero 

vector? 

 

 General discussion (15 minutes)  

The students will be asked to present their solution on the board in the order of the questions. 

Questions for further discussion (8 minutes) 

 

This question can also be used for students who need additional challenges during the small 

group period. These questions further explore the same concepts as above, while allowing the 

students to be more creative. If there is no time for these in class, they can be given as 

questions for the students to think about on their own.  
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Redefine T such that T(1,2,3)=(1,2,3), answer the same questions as above. 

 

1. dim Ker T = 0 

T(1,2,3) = (1,2,3) 

T(0,1,0) = (0,1,0) 

T(0,0,1) = (0,0,1) 

 

dim Ker T = 0 iff Ker T = {0⃗ }, so no vector can have an image of (0,0,0).  

 

Possible difficulty: T(1,2,3) = T(0,1,0) = (1,2,3), this also leads to Ker T ≠ {0⃗ }, since then 

T ((1,2,3)-(0,1,0)) = (0,0,0) from the linearity of the transformation. 

 

2. dim Ker T = 1 

T(1,2,3) = (1,2,3) 

T(0,1,0) = (0,0,0) 

T(0,0,1) = (0,0,1) 

 

Possible difficulty: If two independent vectors have zero as their image, then the dimension 

will be two. 

 

3. dim Ker T =2 

T(1,2,3) = (1,2,3) 

T(0,1,0) = (0,0,0) 

T(0,0,1) = (0,0,0) 

 

Advancing question: T(1,2,3)=(1,2,3) ; T(0,1,0) = T(0,0,1) = (1,1,1). What is the dimension 

of the kernel? 

 

To solve this it is simplest to find dimension of the Image and use the dimension theorem, but 

it can also be found directly: 

 

Ker T = {(x,y,z)  |  T(x,y,z) = (0,0,0)} =  

          = {(x,y,z) ϵ ℝ3 |  T ((x) · (1,2,3) + (y-2x) · (0,1,0) + (z-3x) · (0,0,1) ) = (0,0,0) } = 

          = {(x,y,z) ϵ ℝ3 |  (x) · T(1,2,3) + (y-2x) · T(0,1,0) + (z-3x) · T(0,0,1)  = (0,0,0) } = 

          = {(x,y,z) ϵ ℝ3 |  (x) · (1,2,3) + (y-2x) · (1,1,1) + (z-3x) · (1,1,1)  = (0,0,0) } = 

          = {(x,y,z) ϵ ℝ3 |  (x +y-2x+z-3x, 2x+y-2x+z-3x,3x+y-2x+z-3x) = (0,0,0)} = 

          = {(x, y, z) ϵ ℝ^3 | {

x + y − 2x + z − 3x = −4x + y + z =  0
2x + y − 2x + z − 3x = −3x + y + z = 0
3x + y − 2x + z − 3x = −2x + y + z = 0

} 

         = {(x,y,z) ϵ ℝ3  |  x=0 ;  y = -z } = {(0,y,-y)  |  y  ϵ ℝ3 } 

Thus, dim Ker T = 1, and this is not an example for dim Ker T =2. 

 

4. dim Ker T =3 

Since T(1,2,3) ≠ (0,0,0), then (1,2,3) is not in the kernel. Thus, Ker T  ≠  ℝ3, Ker T is a 

subspace of  ℝ3 and so dim Ker T ≠ 3. 

OR 

dim Ker T = 3 iff dim Im T = 0, by the dimension theorem. 

Im T = Sp{T(1,2,3), T(0,1,0), T(0,0,1)} = Sp{(1,2,3), T(0,1,0), T(0,0,1)},  

so dim Im T ≥ 1, that is dim Im T ≠ 0, so for this T, dim Ker T ≠ 3.  
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Conclusion (5 minutes) 

Linear transformations can be defined as a general element, on the elements of any basis or 

by the kernel or image. The connections between these various definitions will be stressed. 
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10.1.7 Diagonalization and Eigen Values (Week 13) 

 

Lesson Goal: The question explores eigenvalues and diagonalization. This is the last topic of 

the course and utilizes all the previously learned topics. Calculating eigenvalues of a given 

matrix can be done ritually, by routines. This question asks for conditions on parameters for 

diagonalization. The routines are not sufficient.   

 

The question also includes noting extreme cases, (e.g. 0A = , A  is a 1 1  matrix). These can 

be cases for which statements hold, and need to be taken into account. Students should be 

aware that these cases should be explored also. 

 

Introduction: (7 minutes) Reminding the students of the basic definitions that they saw in 

class.  

 

Definitions: 

1. F  is an eigenvalue of a matrix 
n nA F  , if there exists nv F , 0v  , such that 

A v v =  .  

2. The characteristic polynomial for matrix A is ( ) | |p I A =  − , whose n roots are the 

n eigenvalues of A. 

3. ( )AM  =Arithmetic Multiplicity of   = Multiplicity of   as a root of the 

characteristic polynomial. 
The sum of the AM’s is n. 

4.  ( )GM  = Geometric Multiplicity = dimension of  's Eigen space = 

{ | }dim v A v v =    

5.  1AM GM   

6. 
1

( )
n

i

i

tr A
=

=  and 
1

( )
n

i

i

det A
=

=  

7. A is diagonalizable   for all eigenvalues AM=GM 

 

Question: (15 minutes) The students will work in small study groups of 2-3 students in each 

group. The students will choose their own group.  

Let A be an n n  complex matrix. 

 

1 2

1 2

1 2

n

n

n

a a a

a a a
A

a a a

 
 
 =
 
 
 

 

 

For what conditions on 1 2, , , na a a  is A  not diagonalizable? 

 

Possible Solution: 

• If 1 2 0na a a= = = =  then A  is diagonal, and thus diagonalizable. 

• If 0ia   for some i , 1 i n   (at least one ia , the rest can be whatever) then 

( ) 1r A =  and if 1n   then A  is not invertible, thus 0 is an eigenvalue with GM 
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(0 ) 1n r I A n− − = − . If 1n =  then A  is a 1 1  matrix and is diagonal, thus 

diagonalizable. 

• AM of 0 1 GMn − = , by Theorem. 

• Find value of n , the last eigen value:  

If 0n =  then AM(0) 1 GM(0)n n=  − =  and A  is not diagonalizable.  

If 0n   then AM(0) 1 GM(0)n= − =  and then for n  it holds also that GM=AM,  

so A  is diagonalizable. 

• A  is not diagonalizable when 0ia   for some i , 2n   and 0n = .  

• By Theor  em 
1

( )
n

i

i

tr A
=

= , so 1 20 0 n na a a+ + + = + +  

•  A  is not diagonalizable if 1 2 0na a a+ + + = , for some i  0ia  , 2n  . 

 

General discussion (15 minutes) The students will be asked to present their solution on the 

board: 

 

The connections between the different solution methods will be pointed out. The students can 

be asked if the solutions are the same and how do they connect. 

 

Questions for further discussion (8 minutes) 

These questions can also be used for students who need additional challenges during the 

small group period. These questions further explore the same concepts as above, while 

allowing the students to be more creative. If there is no time for these in class, they can be 

given as questions for the students to think about on their own.  

 

1. Give a Linear Operator whose matrix representation in some basis is A .  

2. Find Ker T, Im T, and the Eigen space of 0.  

 

 

Solution:  

Take n = 4 for an example, and 

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

A

− 
 

− =
 −
 

− 

: 

 

Each column is Image of element in basis, so choose standard basis and: 

 

(1,0,0,0) (0,0,0,0)

(0,1,0,0) (1,1,1,1)

(0,0,1,0) ( 1, 1, 1, 1)

(0,0,0,1) (0,0,0,0)

T

T

T

T

=

=

= − − − −

=

 

Then ( , , , ) ( , , , )T x y z w y z y z y z y z= − − − − , by properties of linear operator and basis. 

 
{( , , , ) | 0, , , , } {( , , , ) | , , }KerT x y z w y z x y z w KerT x y y w x y w= − =   =   
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{( , , , ) | , } {( , , , ) | }ImT y z y z y z y z y z ImT t t t t t= − − − −   =   

 

Eigen Space (0): Find Eigen Vectors: 

 ( )

0

0
0

0

0

x

y
I A

z

w

   
   
   − =
   
   
   

 

 

0 1 1 0 0

0 1 1 0 0

0 1 1 0 0

0 1 1 0 0

x

y

z

w

−    
    

−    =
    −
    

−    

 

  

Solving the System: 0y z− + =  yields 3 linear independent eigen vectors: 

{(1,0,0,0), (0,1,1,0), (0,0,0,1)}  

 

Eigen Space for 0 is the linear span of these vectors: 
{(1,0,0,0), (0,1,1,0), (0,0,0,1)} {( , , , ) | , , }Sp x y y w x y w KerT=  =  

 

Also note that 1 3 4dimImT dimKerT+ = + =  

 

Note: If 3dimKerT =  is T diagonalizable?  

Not necessarily, since Ker T is the eigenspace of 0, the dimension is the GM. However, the 

AM can be different. For the above matrix the characteristic polynomial is: 
4( )p  = , the 

AM of 0 is 4, and A is not diagonalizable. 

 

Conclusion (5 minutes) The connections between the kernel, the image and the Eigen space 

of 0 will be discussed. 
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10.2 Appendix B - Small Group Preliminary Analysis  
 

 Group Topic Participants Language Interaction 

1  S3 -1 Linear 

dependence 

Three girls 

 

English The girls worked together, 

gave examples immediately, 

minimal discussion 

2  S3 -2 Linear 

dependence 

Alice & Ben English Ben tells Alice what to do, 

Much discussion 

3  S4 -1 Linear 

Transformat

ions 

Sarah, Alice, 

Nicole  

English Sarah quiet. Others worked 

together, both suggest and 

discuss 

4  S5 - 1 Eigen 

Values 

Alice and 2 

other girls 

English Alice tells others what to do, 

some discussion 

5  S5-2 Eigen 

Values 

Three girls English Discussion very not clear 

6  W1-1 Complex 

Numbers 

Three boys, 

Arabic 

 

Arabic -  

Translated 

Ahmed does most of talking 

at beginning, then involved 

others in discussion. Cadi 

suggests correct answer 

which was ignored initially. 

7  W1-2 Complex 

Numbers 

Segev, Ziv, 

Orr 

Hebrew All three discuss, made 

mistake and realized it. 

Attempted to build counter  

examples 

8  W2-1 Matrices Gal, Dor, 

Harel 

Hebrew Initially, Harel tells others 

what to do, but then makes an 

error. Then starts a discussion 

with all three involved 

9  W3-1 SLE 2 boys Arab 

& Hebrew 

Hebrew Minimal discussion. When 

Ahmed suggests Yaniv does 

not listen. 

10  W3-2 SLE 2 boys Hebrew Both state answers and claim 

“its simple/obvious”. No 

justifications given, so no 

discussion. 

11  W3-3 SLE 2 boys Hebrew Leader and follower 

Basically, monologue of 

leader 

12  W4-1 Linear 

Dependence 

2 boys Hebrew Expert and follower 

Follower asks Eexpert for 

confirmation of math and 

social: “should we write it?” 

13  W4-2 Linear 

Dependence 

Yaniv & 

Hadar 

Hebrew Both discuss, both suggest. 

There is a mistake and then 

discuss 

14  W4-3 Linear 

Dependence 

Boy & girl Hebrew Leader & Follower 

Girl is expert  
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15  W5-1 Linear 

Transformat

ions 

Group 1 SLE Hebrew Work separately 

When minimal discuss: 

Ahmed treats Yaniv as expert 

16  W5-2 Linear 

Transformat

ions 

Group 1 

Matrix 

 

Hebrew Attempt to be an expert, but 

does not work. State answers 

with little justification or 

discussion. 

17  W5-3 Linear 

Transformat

ions 

Boy & Girl  Hebrew Girl is leader and tells Boy 

what to do 

18  W6-1 Eigen 

Values 

Yaniv & 

Nadav 

Hebrew Expert and follower 

19  W6-2 Eigen 

Values 

Gal, Dafna, 

Hadar 

 

Hebrew Two suggest things and all 

discuss things. Much 

discussion about why? 

20  W6-3 Eigen 

Values 

 2 Boys and 1 

Girl  

 

Hebrew Bar attempts to be expert, 

others don’t accept him.  

Discussion about definition of 

diagonalizable 
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10.3 Appendix C - Hadar and Yaniv 

10.3.1 Appendix C1 - Transcript of Hadar and Yaniv (Translated from Hebrew) 
 

 Speaker  

26 Hadar (Assertation) 2…a linearly dependent set, u belongs to V… 

27 Yaniv Yes. It (the assertation) is definitely true. 

28 Hadar A linearly dependent set, u belongs to V, all these together 

 (
1 2 3 4{ , , , }v v v v ) are linearly dependent…Are you sure it’s true? 

29 Yaniv If it (
1 2 3{ , , }u u u ) is already linearly dependent, and we add another 

vector, this subset is still linearly dependent 

30 Hadar Why? Take now 3 like this (u1=(1,0,0,0))…take 3 like this [points to 

(1,0,0,0)], and now you add to them this  (u4=(0,1,0,0))…not 

necessarily (that the set is linearly dependent)” 

31 Yaniv What do you mean? What do you mean 3 like this? 

32 Hadar We said u1, u2, u3 are linearly dependent. 

33 Yaniv No, but, here they (u1, u2, u3) are linearly independent.  

36 Hadar Fine (downplaying).  

That’s why I said let’s take 3 that are dependent with u1 [looks at 

Yaniv]. 

Let’s say here is 2, 3 and 4. 

37 Yaniv Nu. That’s exactly what I am saying. If we add, doesn’t matter what 

we add…these 3 vectors will still be dependent [looking at Hadar]  

38 Hadar The 3 (vectors) are (linearly dependent). But the fourth isn’t. So, the 

entire set is linearly independent 

39 Yaniv Why? 

40 Hadar Because…Because it’s possible. You can bring 

u1=(1,0,0,0) ; u2=(2,0,0,0) ; u3=(3,0,0,0) ; u4=(0,1,0,0). 

41 Yaniv Then it is still linearly dependent. 

42 Hadar How is it linearly dependent?!? [disagreeing] 

43 Yaniv No, it (the vector) isn’t – but the set altogether is. 

44 Hadar Why? If you find scalars, that not all of them are zero…? 

45 Yaniv …that means that it is linearly dependent. 

46 Hadar And this (the linear combination) won’t be equal to zero, because this 

(u4), you cannot neutralize if you don’t put a zero for him 
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47 Yaniv Yes. But it doesn’t matter if he will be zero, if all the rest uh…if there 

is one … 

48 Hadar Then show me how 

49 Yaniv No, that’s what I am saying. If there is at least one…uh…if there is one 

scalar 

50 Hadar Then show me how 

51 Yaniv No, that is what I am saying. If there is at least one…uh..if there is one 

scalar 

52 Hadar You are saying that if we cancel them out in a manner that is not zero 

and this one you brought for me that is zero 

53 Yaniv Exactly 

53.1 Hadar Ahhh…I understand 

53.2 Yaniv If there is one scalar at least that is different from zero...then it 

54 Hadar That’s OK. 

So you are saying, like, that if in general there exists…exist at least two 

that are linearly dependent in the set, it doesn’t matter which vector we 

add to them the set will still be linearly dependent. 

55 Yaniv Yes. Or…if it is 1 then simply  

56 Hadar I don’t understand [to Yaniv] 

57 Yaniv Like, if there is…If one of these vectors is zero, 

58 Hadar Ummhmm [agreeing] 

59 Yaniv Then it doesn’t matter by what we multiply it…there will still be zero. 

60 Hadar Ah! And that makes for us a linearly independent set. 

61 Yaniv No. A dependent set. 

62 Hadar Linearly dependent 

63 Yaniv Because there is one scalar that is different from zero. 

64 Hadar Hmm...then it is linearly independent. 

65 Yaniv Linear independence is what she wrote (looking at the board) 

66 Hadar There exist scalars that, that not all of them are zero 

67 Yaniv No, that…no 

68 Hadar Then if we found one scalar that is not zero 

69 Yaniv Yes? 

70 Hadar Then, if zero is in the set…then it (the set) is always linearly 

independent 
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71 Yaniv No. Linearly dependence says that there are linear combinations 

72 Hadar That (linear dependence) means that alpha 1 is equal to alpha 2 is equal 

to zero, they are all equal to each other and they are equal to zero. 

73 Y That’s not that it is linearly independent? 

74 H It’s linearly independent 

75 Y Yes [both laugh] 

76 Hadar We are getting confused with the definition 

77 Y It’s linear independent [laughing] 

78 Hadar Yes. 

Then…if we have all sorts in the set, and we put for all of them zero, 

but for the zero vector we put 3… 

79 Yaniv That’s it. Exactly. 

80 Hadar Then the set becomes? 

81 Yaniv Linearly dependent. 

82 Hadar Dependent. 

83 Yaniv Yes. 

84 Hadar OK. That’s the idea. The idea…exactly the conclusion at the end. 

85 Yaniv I hate these acronyms [laughs, hides mouth] 

86 Hadar Then wait a second…then..Wow! It’s hard to realize this. That it () will 

always be dependent…We are saying it’s always true [marks check on 

paper] 

87 Yaniv Yes. Its true. We need to prove it. 

88 Hadar Ummm 

89 Yaniv Ummm 

90 Hadar If this set is linearly dependent then it can be done, and this we can 

always multiply by zero 

91 Yaniv That’s it. Let’s assume that this set is linearly independent, and then 

92 Hadar Set? Ah! You want to assume by way of contradiction 

93 Yaniv Ah huh.(affirmative) 

94  Hadar We can do…if we said all these have an alpha 1, alpha 2 

95  Yaniv That’s it. A subset. 

96  Hadar Alpha 3. And here an alpha 4….will be zero 

97  Yaniv No. Actually we do not have to assume by negation 

98  Hadar What is always, yes linearly dependent 
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99  Yaniv We say that…there is here a subset that is linearly dependent 

100 Hadar That is, exist scalars such that the sum of this set will be equal to zero, 

Even if they (all the scalars) are not equal to zero. 

101 Yaniv Exactly 

102 Hadar And then if we add another vector, we can multiply it by zero 

103 Yaniv Then…uhhhh…we need to write it down? 

104 Hadar No. If you can repeat it orally on the board 

105 Yaniv On the board?! That’s not orally (nervous laugh) 

106 Hadar Orally on the board (laughing) 

107 Yaniv Laughs 

108 Hadar Like, if someone wants to go to the board, OK OK. Let’s continue. 

109 Yaniv OK 

110 Hadar No. We have the idea of the proof in our minds 

111 Yaniv Yes 

112 Hadar Let’s continue. 
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10.3.3 Appendix C2 – Channels of communication analysis of Hadar and Yaniv 
 

1  Group

2Part1 

  Non 

Verbal 

 הדר יניב 

ה מקריאה  ...דוגמא אחת נכונה ודוגמא אחת לא נכונה  הדר 11:55  2

 את השאלה 

 Priva

te 

  Private י כותב  U4אז...אה...נגיד, ננסה.... יניב    3

  Vנניח אם ה...נניח אם המרחב הזה יהיה...אם  יניב    4

, ואלו יהיו....כן, וקטורים  4יהיה נניח וקטורים ל 

  4של 

 ה על י,

 י מ על הדף

Pro  

וקטורים.....אז הרביעי יכול להיות   3ויש לנו רק  יניב    5

 ת"ל 

 Pro  

  Pro  ויכול להיות לא ת"ל  יניב    6

  E1,e2,e3נגיד אם זה הבסיסיים  יניב    7

 אז בת"ל  4במקום  0וניקח 

 Pro  

  Pro  משהו אחר אז ת"ל  יניב    8

צריך להביא דוגמא ספציפית? או מספיק לכתוב   יניב  12:45  9

 אהה...

 Pro  

 reac   דוגמא  הדר   10

  U1+U2  Proאולי פשוט אפשר לכתוב  יניב    11

 reac   לא..זה אבסרקטי נראה לי...  הדר   12

 pro   נניח ואז אתה אומר אחד ככה ואחד OK הדר   13

priva   זה ת"ל הדר   14

te 

 בשביל בת"ל צריך מספר  הדר   15

 אלא אם כן אני טועה, כאילו זה לא תאור טוב 

  pro 

 ;U1=(1,0,0,0); U2=(0,1,0,0) הדר 14:05  16

U3=(0,0,1,0); U4=(5,0,0,2) 

  pro 

 pro   זה בתל  הדר   17

  reactive  כן  יניב    18

  pro  התת קבוצה הזאת עדיין ת"ל יניב    19

 react   למה?  הדר 14:42  20

 pro   כאלה...  3תיקח עכשיו  הדר   21

 pro  על י עכשיו אתה מוסיף להם את זה...לא הכרח הדר   22

  reac  כאלה?  3מה ז'תמרת? מה ז'תומרת  יניב    23

 ת"ל U1 ,U2 ,U3אתה לוקח...נגיד...אמרנו ש  הדר   24

 אז נניח...יכול להיות שכאילו...

  pro 

  re  לא.  יניב    25

  pro  אבל פה הם בת"ל  יניב    26

 pro   הם יהיו פה צירוף לינראי של ... הדר   27

 reac   לא, לא אמרו ש הדר   28

  reac  לא. בדוגמא אמרו  יניב    29

שהם  3בסדר ]ביטול[ בגלל זה אמרתי שבא נקח  הדר   30

 .  U1תלויים לינארית עם 

  reac 

 pro   ... 4ו 3 2בא נגיד שפה יש  הדר   31

  reac  נו. זה בדיוק מה שאני אומר.   יניב    32

 3אם אנחנו נוסיף, לא משנה מה נוסיף...ה יניב    33

 וקטורים האלה עדיין תלויים. 

 pro  
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 reac   כן.   3ה הדר   34

 pro   אבל הרביעי לא.   הדר   35

 pro   אז הקבוצה כולה תהיה בת"ל הדר   36

  pro  למה? יניב  15:15  37

 rea   כי...כי אפשר הדר   38

 אפשר להביא את  הדר   39

U1=(1000); U2=(2000); U3=(3000); 

U4=(0100) 

  pro 

  re  אז זה עדיין תלוי לינארית  יניב    40

 pro   איך תלוי לינארית? הדר   41

  reac    –לא, הוא עצמו לא  יניב    42

  pro  אבל כל הקבוצה ביחד כן יניב    43

 rea   למה?  הדר   44

 pro   אם תמצא סקלרים, שלא כולם אפס.... הדר   45

  rea  ...זה אומר שהיא תלויה לינארית יניב    46

וזה לא יהיה שווה אפס, כי את זה, אתה לא יכול  הדר   47

 אפס לאפס אם לא תשים לו 

  pro 

  re  כן.   יניב    48

אבל זה לא משנה אם הוא יהיה אפס, אם כל  יניב    49

 השאר אה... אם יש אחד..

 pro  

 pro   אז תראה לי איך הדר   50

לא, זה מה שאני אומר. אם יש אחד  יניב    51

 לפחות..אה...אם יש סקלר אחד 

 rea  

אתה אומר שנבטל אותם בצורה שהיא לא אפס  הדר 16:00  52

 ואת זה הבאת לי שהיא כן אפס

  reac 

  reac  בדיוק  יניב    53

 reac   אהה...הבנתי הדר   54

אם יש סקלר אחד לפחות שהוא שונה מאפס..אז  יניב    55

 זה אההה

 pro  

 reac   זה בסדר.  הדר   56

שהם תלויים לינארית   2אז אם בכללי קיימת  הדר   57

הקבוצה בקבוצה, לא משנה מה נוסיף להם עדיין 

 תהיה ת"ל

  pro 

  rea  כן..  יניב    58

  pro  אז פשוט כי זה אפס 1או...אם זה     59

  pro  אם האפס בקבוצה אז היא אהה גם ת"ל  יניב    60

 reac   לא הבנתי הדר   61

  reac  כאילו, אם אחד מהוקטורים האלו הוא האפס יניב    62

 reac   אמהם ]הסכמה[ הדר   63

  pro  במה נכפיל אותו...עדיין יהיה אפס אז לא משנה  יניב    64

 rea   אה.  הדר   65

 pro   ואז זה גם עושה לנו קבוצה בת"ל הדר   66

  reac  לא.  יניב    67

  pro  קבוצה תלויה יניב    68

 reac   תלויה לינארית. הדר   69

  reac  כי יש סקלר ששונה מאפס  יניב    70

על י  הממ...אז היא בת"ל   הדר   71

 מחייכת 

 reac 

  pro על הלוח בת"ל זה מה שהיא כתבה   יניב    72
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 reac   קיימים סקלרים ש...שלא כולם אפס.  הדר   73

  reac  לא, ש... לא   יניב    74

 pro   אז אם מצאנו סקלר אחד שהוא לא אפס הדר   75

  reac  כן?  יניב    76

 pro   אז, אם אפס בקבוצה ...אז היא תמיד בת"ל הדר 17:00  77

  reac  לא.  יניב    78

  pro  ת"ל זה אומר שיש צירופים לינארים יניב    79

 reac   0שווה ל 2שווה לאלפא  1זה אומר ש אלפא הדר   80

 pro   0כולם שווים אחד לשני והם שווים ל הדר   81

  reac  זה לא שהיא בת"ל? יניב    82

 reac   היא בת"ל  הדר   83

  reac צוחקים  כן   יניב    84

 reac   מתבלבלים בהגדרה אנחנו  הדר   85

  reac צוחקים  זה בת"ל  יניב    86

 reac   נכון   הדר   87

אז אם יש לנו בקבוצה כל מיני סקלרים ונשים   הדר   88

 3לכולם אפס, אבל לוקטור האפס נשים לו 

  pro 

  reac  זהו. בדיוק.  יניב    89

 pro   אז הקבוצה הופכת להיות  הדר   90

  rea   תלויה לינארית יניב    91

 reac   תלויה הדר   92

  reac צוחק כן   יניב    93

 reac  חיוך קטן זה הנקודה. זה הנקודה. ממש המסקנה בסוף  OK הדר   94

צוחק  אני שונא את ה???? האלו   יניב    95

 ומסתיר פה

pro  

אז, רגע...אז... וואי קשה לתפוס את זה, שזה   הדר   96

 תמיד יהיה תלוי.. 

  pro 

 pro  וי  על הדף   אנחנו אומרים שזה נכון  הדר   97

  reac  כן. זה נכון.  יניב  17:43  98

  pro  צריך להוכיח את זה  יניב    99

    שניהם בוהים בדף    100

  private  אה..... יניב  17:53  101

 pro   אם הקבוצה הזאת ת"ל אפשר לעשות את זה,  הדר   102

 pro   ואת זה תמיד לכפול באפס  הדר   103

  private  זהו, נניח שהקבוצה הזאת בת"ל, ואז יניב    104

 rea   קבוצה...אה! הבנתי. אתה רוצה להניח בשלילה הדר   105

  reac  אההה  יניב    106

 pro   אפשר לעשות כל אלה    הדר   107

 pro   2אלפא  1אמרנו שיהיה להם אלפא  הדר   108

  private  זהו. זה תת קבוצה  יניב    109

 pro   0האלפא תהיה . ופה 3אלפא  הדר   110

  private  לא. בעצם לא צריך להניח בשלילה יניב    111

 pro   כן ת"ל  הדר   112

אנחנו אומרים ש...יש פה תת קבוצה שהיא תלויה   יניב    113

 לינארית

 pro  

כלומר קיימים סקלרים כך שסכום הקבוצה  הדר 18:25  114

 הזאתי יהיה שווה לאפס 

 reac  על הדף 

 pro  על י  שווים לאפס גם אם הם לא  הדר   115
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  reac על הדף  בדיוק  יניב    116

ואז גם אם נוסיף עוד וקטור אחר אפשר לכפול  הדר   117

 אותו באפס 

 pro  לדף

  pro לה אז...אההה..צריך לכתוב את זה? יניב    118

יכול לחזור על זה בע"פ על הלוח  אתהלא, אם  הדר   119

 אז זה בסדר 

 reac  לי

על הלוח?....אבל זה לא בעל פה על הלוח    יניב    120

 מצחקק 

  reac לה

 reac  לי מחייכת בעל פה על הלוח  הדר   121

    שניהם צוחקים     122

150    TA  מדברת לכיתה    
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10.4 Appendix D – Transcript and Channels of communication analysis of Alice and 

Ben 
 

1  Speak

er 

Mathematical Statement Non verbal Ben 

Channel 

Alice 

Channel 

2       

3  Alice  A moves to sit 

next to B’s 

desk 

 Inter- 

personal 

4  Ben This is a 15 minute question. 

Are you ready? 

Writing on 

paper 

Private  

5  Alice Starts reading question   Private 

6  Ben Wait a second … This could 

just be all zeros 

Looking at 

paper only 

Private  

7  Ben  (mumbles quietly, not clear) Writes on 

paper 

Private  

8  Alice Reads Claim  (above)  

Yes! Of course! Because it 

doesn’t matter if 

Looks at B  Inter 

Proactive 

9  Ben  Looks only at 

paper 

Private  

10  Alice  It means like always? Looks at Ben  Inter 

Proactive 

11  Ben Is there a vector that you can 

add to this set will 

uhh…ummm..uhh.. 

Looking down Private  

12  Ben The question is - its a 

combination of these ummm 

vectors…ummm…wait a 

second. 

Looking down Private  

13  Ben Umm It is a combination. Looking down Private  

14  Alice I don’t know if it’s always 

true. 

Sits up 

suddenly 

 Private 

15  Ben Yeah. It is true.  It is true. Matter of fact.  Inter 

Reactive 

 

16  Ben If this is linearly dependent 

then this is linearly 

dependent 

Looking down Private  

17  Alice But what if we add…   Inter 

Proactive 

18  Ben Forget it, it doesn’t matter – 

its true 

 Inter 

Reactive 

 

19  Alice Always?   Inter 

Proactive 

20  Ben Uhh.. so..   Inter 

Reactive 

 

21  Ben If this is a linear dependent 

set, then there is a.. 

 Private  
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22  Ben Then there is a…  Private  

23  Ben One of these that is not zero,  Private  

24  Ben then one of the alphas, one 

of the coefficients is not 

zero. 

 

 Private  

25  Ben Like the coefficients are 

alpha, alpha times ; beta 

times 

 Private  

26  Alice Yeah?   Inter 

Proactive 

27  Ben  OK. Nodding Inter 

Reactive 

 

28  Alice Signing attendance sheet    

29  Ben U1, u2 u3, u4… Linear 

dependent, therefore .. 

 Private  

30  Ben now we’re going to have … 

ok… so option 1 : u… 

alpha1 is equal to , 

 Private  

31  Ben negative alpha u1 is equal to 

ummm…. beta u2 + gamma 

u3 

Staring at 

ceiling 

Private  

32  Ben Now u1 is equal to… do we 

even need to do it this way? 

looking at 

paper, talking 

to self) 

Private  

33  Ben I don’t even know… fine… 

beta over alpha gamma over 

alpha…. 

 Private  

34  Ben so we have represented the 

u1 vector , in terms of a 

combination of the other 

vectors. 

To Alice Inter 

Proactive 

 

35  Ben It shouldn’t be 1 it should be 

three, I’ll change the 3 to 1.  

To self, 

correcting 

paper 

Private  

36  Ben It’s usually the last one. To self Private  

37  Ben This basically means that 

alpha is not equal 0. That’s 

all that means. 

To Alice Inter 

Proactive 

 

38  Ben I don’t know. I’m saying that 

they’re linear dependent.  

To paper Private  

39  Ben We’re saying that alpha u1 

beta u2 gamma u3 umm…, 

To self, 

writing on 

paper 

Private  

40  Ben where alpha beta gamma are 

not all zero… equal to zero  

 Private  

41  Ben So if one of them exist , we 

can divide by it. 

Stares at Alice 

until she nods 

Inter 

Proactive 

 

42  Alice umm hmmm nodding  Inter 
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Reactive 

43  Ben We can work with it, this 

one here will be a 

combination uhh…so…  

To paper Private  

44  Ben if you add another vector…. To paper Private  

45  Ben if you add u4… then…we’re 

going to have 

Alpha u1 beta u2 gamma u3 

theta u4 … 

To paper Private  

46  Ben now we want that to be equal 

to the zero vector… 

To paper Private  

47  Ben in order to check whether or 

not they’re dependent or 

independent. 

To paper Private  

48  Ben And we know that alpha is 

not equal to zero…. umm… 

wait a second… wait a 

second… 

To papere Private  

49  Ben What do you think? (To Alice) Inter 

Proactive 

 

50  Alice Yeah, it works    Inter 

Reactive 

51  Alice because if you subtract, 

right? subtract, minus all of 

this stuff and divide by alpha 

then you get, you get … 

  Inter 

Reactive 

52  Ben negative beta over alpha u2 

minus gamma over alpha u1,  

Starts writing 

and talking: 

Private  

53  Ben instead of  3 cause…,  To paper Private  

54  Ben minus theta over alpha u4 

equals v3, therefore 

…ummm… 

To paper Private  

55  Ben Kay, this is not the proof at 

all, this is just like the idea 

of the whole thing 

To paper Inter 

Proactive 

 

56  Alice Why is this ????? I mean …   Inter 

Proactive 

57  Ben We need to write alpha and 

beta  

 Inter 

Reactive 

 

58  Ben Beta exists in all different  

Umm … ok, and also… 

 Inter 

Reactive 

 

59  Ben You write it neatly. (the 

proof is finished) 

 Inter 

Proactive 

 

60  Alice You want me to write it out? 

Thank you.  

(laughing)  Inter 

Reactive 

61  Ben Yeah – you can do that. 

 

 Inter 

Reactive 

 

62  Ben And show that you, we know 

this 

 Inter 

Proactive 
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63  Alice Ok. Fine, fine    Inter 

Reactive 

64  Ben We have the idea   Inter 

Proactive 

 

65  Alice Ok. 

We have alpha 1, keep track 

of it – yeah? 

  Inter 

Proactive 

66  Alice Option 1… 

Wait - why option 1? 

  Inter 

Proactive 

67  Ben Well… Because we don’t 

know what vector…  

 Inter 

Reactive 

 

68  Ben we don’t know which alpha, 

beta or gamma is equal, not 

equal to zero. 

 Inter 

Reactive 

 

69  Alice You can choose whichever 

you want because… 

  Inter 

Proactive 

70  Ben Technically we have to write 

it … umm… 

 Inter 

Reactive 

 

71  Alice Yeah. But why? (laughing)   Inter 

Proactive 

72  Ben That (mumble) was 

important 

 Inter 

Reactive 

 

73  Alice  Laughing   

74  Ben Cool. 

Then we’re going to say 

that… 

 Private  

75  Ben This is the definition of 

independence, of an 

independent set- right? 

 Inter 

Proactive 

 

76  Alice Yeah. You got it. Yeah 

That’s, that’s … 

  Inter 

Reactive 

77  Ben This is saying that’s true  Inter 

Reactive 

 

78  Alice Yes, it is.   Inter 

Reactive 

79  Ben Then if you add another one 

to that second one, you can 

still divide by the alpha and 

then you will have a 

combination… 

 

 Inter 

Reactive 

 

80  Ben Cause this is not equal to 

zero. 

 Inter 

Reactive 

 

81  Alice But   Inter 

Proactive 

82  Ben But if beta is equal to zero, it 

doesn’t make a difference  

 Inter 

Reactive 

 

83  Ben it’s still linear dependent  Inter 

Reactive 
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84  Alice But if beta equals zero then 

<mumble> 

  Inter 

Proactive 

85  Ben Yeah, you can still make it 

zero 

 Inter 

Reactive 

 

86  Alice Wait! Let me just make sure 

I understood, ‘cause now 

I’m … One side satisfies - 

Alpha times …Zero… fine 

… 

  Inter 

Proactive 

87  Alice Plus, I will take… 

Then we’ll take the one that 

has a coefficient that is not 

zero… 

  Inter 

Proactive 

88  Ben  Playing with 

pen but not 

talking 

  

89  Alice Well take vector u1 that has 

a coefficient that is not zero -

ok? 

So we take  

  Inter 

Proactive 

90  Ben Linear   Inter 

Reactive 

 

91  Alice We can add another vector 

to the set  

 

  Inter 

Proactive 

92  Alice and then we’re going to say 

umm 

Alpha plus…  yeah, alpha 

beta gamma 

  Inter 

Proactive 

93  Ben As long as it’s not zero, we 

can still bring it over to the 

other side, and divide. 

 

 Inter 

Reactive 

 

94  Ben Which gives … which is a 

linear combination … is 

 Inter 

Reactive 

 

95  Alice Wait. wait. There’s one 

more, one more step. 

 

  Inter 

Proactive 

96  Alice You subtracted this.   Inter 

Proactive 

97  Ben Here’s the zero  Inter 

Reactive 

 

98  Alice How does this show? we 

need to show 

  Inter 

Proactive 

99  Ben This shows that these are a 

combination of the previous 

ones 

 Inter 

Reactive 

 

100 Alice Yeah. but why does that 

matter? 

  Inter 

Proactive 
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101 Ben Because a dependent, 

linearly dependent set is a 

linear combination of, has a 

vector that is a combination 

of the other vectors. 

 Inter 

Reactive 

 

102 Alice Yeah. But why?   Inter 

Proactive 

103 Ben What do you mean – why?  Inter 

Proactive 

 

104 Alice Why? why does that come 

from the definition of 

…alpha, 

  Inter 

Proactive 

105 Ben It does  Inter 

Reactive 

 

106 Alice Yeah, but why? 

 

  Inter 

Proactive 

107 Alice If we subtract u3 from here   Inter 

Proactive 

108 Ben It wouldn’t be zero  Inter 

Reactive 

 

109 Alice Then you have 0, the zero 

vector.  

  Inter 

Proactive 

110 Alice so then you have at least you 

have non-zero coefficients 

  Inter 

Proactive 

111 Ben I don’t think that’s the 

reason.  

 Inter 

Reactive 

 

112 Ben I think the reason is because 

v3 is a combination of the 

other vectors,  

 Inter 

Proactive 

 

113 Ben therefore is dependent   Inter 

Proactive 

 

114 Ben and it doesn’t need, it 

doesn’t need to be included 

in the set… in order for it to 

be… uhh…spanning… uhh, 

spanning all the numbers 

 Inter 

Proactive 

 

115 Alice I agree with you, but I don’t 

understand why… 

  Inter 

Proactive 

116 Ben I don’t know why the 

theorem works… 

 Inter 

Reactive 

 

117 Alice Why? Laughing  Inter 

Proactive 

118 Ben I don’t know – ok?  Inter 

Reactive 

 

119 Alice Ok we’re moving along   Inter 

Proactive 

120 Ben You ask her why, not me.  Inter 

Reactive 

 

121 Alice Ok. Fine. Fine.   Inter 
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Reactive 

122 Ben I’ll write it and if you have 

an issue - I’ll figure it out 

 Inter 

Proactive 

 

123 Alice Ok.  Laughing   

124 Ben  (writing 

down) 

  

125 Alice Can I ask you a question? 

(To TA) 

   

 

  



 
 

 

  -עידוד השתתפות חקירתית באלגברה לינארית דרך הוראה עשירה בשיח 

 של למידה ברמת האובייקט ולמידה ברמת העל  החשיבות

 

 

 

 

 

 

 

 

 

 מרים נחמה ולך 

 

 

 



 
 

 

 

  

 

 

לינארית דרך הוראה עשירה בשיח  עידוד השתתפות חקירתית באלגברה 

 של למידה ברמת האובייקט ולמידה ברמת העל  החשיבות -

 

 

 

 

 

 

 

 חיבור על מחקר 

 לשם מילוי חלקי של הדרישות לקבלת התואר דוקטור לפילוסופיה 

 

 

 מרים נחמה ולך 

 

 

 

 

 מכון טכנולוגי לישראל  -הוגש לסנט הטכניון 

 

2022 ספטמבר, , חיפהאלול תשפ"ב  

 

 



 
 

 

 

 המחקר נעשה בהנחייתם של 

 מצויינים מהפקולטה לחינוך למדע וטכנולוגיה -פרופ"ח עינת הד

 . ופרופ"ח רם בנד מהפקולטה למתמטיקה

 

 המכון הטכנולוגי לישראל על תמיכתו הנדיבה בהשתלמותי. –אני מודה לטכניון  

 

על תמיכתם בשנה"ל  אני מודה למר ליפה משורר וגברת יהודית משורר, תושבי כפר שמריהו, ישראל, 

 תש"פ במלגת ליפה ויהודית משורר. 

 

, על תמיכתה בשנה"ל תשפ"א במלגת תושבת מדפורד, אוראגון, ארה"ב, ג'סיקה אלין רתגב אני מודה ל

 . עמנואל גוטסמן
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 תקציר מורחב 

 

יום את המילים: "תן בליבנו בינה אנשי כנסת הגדולה, שתיקנו את נוסח התפילות, כללו בתפילה הנאמרת בכל 

. המפרשים מסבירים שצמד הפעלים  )ברכות קריאת שמע( להבין ולהשכיל לשמוע ללמוד וללמד לשמור ולעשות"

ללמוד, ללמד, לשמור ולעשות מלמד אותנו שדרושה השתתפות פעילה להוראה פורה ולמידה משמעותית. בנוסף, 

, ומאיץ בנו לבחור בדרכי הוראה שלוקחים בחשבון )פרק כ"ב פסוק ו( י דַרְכּוֹ"בספר משלי כתוב "חֲנֹךְ לַנַעַר עַל פ  

את צורכי הלומד. הוראה מסוג זה נקראת בספרות המודרנית הוראה פעילה ממוקדת לומד, וזוכה לשבחים ולעידוד  

 על ידי חוקרים ואנשי מקצוע. 

ומדים במתמטיקה, בשיתוף פעולה בין במתמטיקה, הוראה ממוקדת לומד תומכת במעורבות משמעותית של הל

הלומדים לקראת הבנה ובשילוב שיטות הוראה שוויוניות. מחקרים שונים המתארים הטמעה של שיטות הוראה 

, נתמכת על ידי  בהישגיםממוקדות לומד במסגרות אוניברסיטאיות, מראים כי הצלחת הלומדים, כפי שהיא נמדדת  

מחקרים הצביעו על בעוד ש יחד עם זאת,חשוב.  ,רק תוצאת הלמידה אולם, תהליך הלמידה, ולא .ושיטות אל

להישגים במתמטיקה , ישנם מחקרים המצביעים על חסרונות להוראת מתמטיקה  שיטות מבוססות לומד  תרומת 

מבוססת חקירה ודיונים. בין היתר, הלמידה בקבוצות קטנות, ללא מומחה, עשויה להרחיק את הלומדים ממטרות  

מודים. בנוסף, יתכנו הסחות דעת בשל אינטראקציות חברתיות או תקשורת לקויה בין חברי הקבוצות.  תוכנית הלי

לפיכך, למחקר זה היו שתי מטרות עיקריות. הראשונה הייתה להתאים את שיטות ההוראה שהוכחו כמקדמות  

פות ולמידה  בהשתת לתמוך על מנת ,למידה חקירתית עשירה בשיח לקורס אלגברה לינארית באוניברסיטה

. השנייה הייתה לבחון היבטים שונים של הוראה ממוקדת לומד ואת התהליכים  אותןולעודד של לומדים  חקירתית

 .כדי להבין טוב יותר מה תומך בלמידה ומה מעכב אותה במסגרות לימודיות מסוג זה בההכרוכים 

נבחרה כיוון  זו מסגרתגניטיבית. תרבותית הקומו -המסגרת התיאורטית ששימשה למחקר הייתה המסגרת הסוציו

 התייחסות הוליסטית לתכנים ולאינטראקציותתיאור וניתוח של תהליכי למידה מתמטיים, כמו גם  מאפשרתשהיא 

של הלומד תוך כדי  וכשינוי בשיח  קהילהל הצטרפותמגדירה את הלמידה כ  קומוגניציהלמידה. ו הוראהבחברתיות  

ולאחר  באופן ריטואלי, תחילה את המומחים   יםמחק  יםחדש  משתתפיםעל פי הגישה הקומוגניטיבית,  . ההשתתפות

סמלים   תמרוןמאופיינת ב   ריטואליתהשתתפות . עצמאי וחקירתיבאופן  יםאת חוקי הקהילה, פועל שהפנימו

  יםהממוקד ייםויצירת  םי י אוטונומ הליכיםית מאופיינת בירתמתמטיים הממוקדים בהליך. לעומת זאת, השתתפות חק

למידה מוצלח הוא  -תהליך הוראה. יטואליזציהר-הדבתוצאת ההליך. כך, לימוד מתמטיקה הוא תהליך הדרגתי של 

 .  חקירתיותריטואליות ליישום רוטינות  רוטינותשל הסטודנטים מיישום  כזה התומך באופן מירבי במעבר

ברמת  בלמידה  ורמת העל.  למידה, על פי התיאוריה הקומוגניטיבית, מתקדמת בשתי רמות: רמת האובייקט

 העל-רמתלהם. בלמידה ב מוכריםהההיגדים שהם מאמצים על עצמים  הלומדים מרחיבים את מערך האובייקט 

על פיהם הם מאמצים היגדים בנוגע לעצמים אלו. שכים ם חדשים ומשנים את ההליכלליהלומדים נחשפים ל

לדוגמא, עבור לומד שאימץ את הכלל לחיבור מספרים שלמים תידרש למידה ברמת העל כדי ללמוד את הכלל של 

ת של ייצוגים השונים )למשל, קבוצות , השקילוּלמשלחיבור שברים. באלגברה לינארית ברמה אוניברסיטאית, 

משוואות ליניאריות, מטריצה וכו'(  מהווה אתגר משמעותי ללומדים, ודורשת למידה   וקטורים, פתרון של מערכות

דורש תהליך של עיצום. עיצום הוא הדבר חדש, כחלק מלמידה ברמת על יש אימוץ של היגדים בשיח  על.-ברמת

י  תהליך בו הלומד מחליף תקשורת על תהליכים עם תקשורת על תוצאת התהליך ובכך בונה עצם מתמט

 ספרות"כשאני שר את ה הסיפור התהליכי עוגיות" היא עיצום שלארבע דיסקורסיבי. לדוגמא, האמירה "יש 

העצם ואת פעולות על ". תהליך העיצום מייתר את התהליך של ארבעמסתיים בהשיר ומצביע על כל עוגיה בנפרד, 

 .  מטיים ביתר יעילותהמת, וכך ניתן לתקשר על העצמים הסובייקט הפועל

בהשתתפות חקירתית   אלגברה לינארית כדי לעודד ולתמוך בקורסי ששולבוסדנאות  פיתחתיזה  מחקר במסגרת

דיונים סביב משימה  . סדנאות אלו השתמשו בשיטות הוראה מבוססות דיון, וכללו  אלגברה לינאריתבשיח של 

"פ כהעשרה לסטודנטים  ותשסדנאות התקיימו במהלך שנות הלימודים תשע"ט ה. .במליאהנתונה בקבוצות קטנות ו

בלימודי הנדסה, מדעי המחשב או מתמטיקה. חלק מהסדנאות התקיימו באנגלית  ראשון שלהם הסמסטר ב

.  סטודנטים 10-60בקבוצות של בין  בעברית התקיימובמסגרת בינלאומית( וחלק מהסדנאות    לומדיםה)לסטודנטים 

 .מספר מצלמות נייחות באמצעותכל סדנה הוקלטה 
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באמצעות המסגרת הקומוגניטיבית, המחקר בחן היבטים שונים של תהליכי למידה הכרוכים בסדנאות. ראשית,  

ההזדמנויות  וכה בהשתתפות חקירתית ולעידוד למידה. לאחר מכן, נבדקנבדק הפוטנציאל של משימות הסדנא לתמי

למידה בדיונים מתמטיים  הלסטודנטים בדיונים בכיתה. לבסוף, נבחנו תהליכי בפועל ללמידה חקירתית שניתנו 

 .ו בקבוצות קטנות של סטודנטיםבוצעש

עצמים  למיפוי ה –  Discourse Mapping Tree (DMT) –על בסיס התיאוריה הקומוגניטיבית פיתחתי כלי 

-. תתמזמנתשיחי האלגברה הלינארית שהמשימה -ניתוח תת כלי זה נבנה על סמך . משימותב הנכללים המתמטיים 

פשר  א DMT-מטריצות ושל מרחבים וקטוריים. כלי השיחים של פונקציות, של -אלו כוללים, למשל, תת שיחים 

ב(  -, ושפותחו, בהתבסס על המשימות חבריכולים להסטודנטים היגדים על אובייקטים מתמטיים לו יא לבחון א( :לי

היגדים המקשרים  סטודנטים לחבר מימושים שונים ו לאלץ  ,דיוניםלקבוע אם למשימות יש את היכולת לעורר 

 Discussion  – מוכרים. הרחבה של כלי זה פחותלמורה הזדמנויות להדגשת קישורים ולספק  ,ביניהם

Discourse Mapping Tree (DDMT), –  בדיונים בכיתה. תהליכי  בפועל שימשה למיפוי היישום של המשימה

 .סטודנטים  ו באמצעות ניתוח של המתמטיקה וערוצי התקשורת בלמידת עמיתים שלחנ הלמידה בקבוצות קטנות נב

פוטנציאל למשימות יש פוטנציאל הן ללמידה ברמת האובייקט והן ללמידה ברמת העל. השניתוח המשימות הראה 

ותרגול של כללי על הקשורים לעצם המתמטי   היכרות עםלמידה ברמת העל המוטמעת במשימות כוללת ל

  לתמוך בלמידה חקירתית דרה אופרטיבית של פוטנציאל של משימותשבמשימה. ניתוח זה גם תמך בגיבוש הג

כללה של איפיון תהליך פתרון ככזו שכוללת בתוכה מבוי  הובחינת מאפיינים ספציפיים של משימות אלה, כגון 

 לחפש דרך אחרת לפתרון.לומד את הסתום המאלצת 

המשימות המעוצבות העניקו הזדמנויות הן ללמידה ברמת האובייקט והן ללמידה ברמת העל, והסדנאות המיושמות  

ניצלו הסטודנטים את ההזדמנויות ללמידה ברמת העל. ברוב המקרים, הדיונים הכיתתיים   בה מידהה להערכתנבחנו 

ניתוח החדש התומך בלמידה ברמת על. ה כללו הזדמנויות רבות, שנתמכו על ידי המורה, ליצירת היגדים בשיח

נמצא כי לעתים ם בדיונים מתמטיים. ראשית, סטודנטיהדגים היבטים שונים של השתתפות ה DDMT-באמצעות ה

של   ופן אקטיבי שימושבאלעודד  ומהמורה נדרשים נאחזו בו, סטודנטשיח דומיננטי שה-היה תתקרובות 

ים עם  סטודנטהייתה תלויה בהיכרותם של ה שיח-יאחרים. שנית, בניית הקשרים בין תתשיח -בתתי הסטודנטים

  םמימושי חיבורע בימכר תפקיד היה ורההמ  לקישורים שיזמה. לבסוף, יםהשיח-שבתת  נרטיבים והאובייקטיםה

 השיחים. -קישורים בין תת בנייתשיח מרובים ובתמיכה ב-שונים בתתי

וההתמודדות  עיקר החקירה הדיונים בכיתה, בהנחיית המורה, כללו הזדמנויות רבות ללמידה ברמת העל. אולם, 

  לעומק שתיבחנתי . קטנות בקבוצותם עם המשימות התרחשו בשלב הלמידה השיתופית סטודנטיהעצמאית של ה

לזוג אחד הייתה אינטראקציה מומחה.  על ידיסטודנטים בלמידה שיתופית ללא תמיכה זוגות   של אפיזודות למידה

 יעילהבתקשורת  כהבערוץ זה תמ התקשורתאישי. -שוויונית בעיקרה, שבה התקשורת הייתה בעיקר בערוץ הבין

ניתוח של השיחים של    נכונות שלו. שינה את הרוטינות הלאאחד הלומדים לא  ,זאת  למרות. סטודנטיםבין ה

  שהדיון ההזדמנויות את ניצלהסטודנטים הראה שוני ברמת העיצום. סטודנט אחד התקדם בתהליך העיצום, והוא 

 הצליחהלא  ,עיצום ה תהליךרק בתחילת  שהייתה חברתו לקבוצה, לו לקידום הלמידה. בניגוד אליו, העניק

 ברמת העל. להתקדם  הצליחהברמת האובייקט, אך לא  ייצרה נרטיבים חדשיםלהשתתף בשיח החדש. היא אמנם 

בערוצים   תקיימההאינטראקציה לא שוויונית. באותה אינטראקציה התקשורת ראה שנבדק לעומק ה זוג נוסף

, ואילו לסטודנטית שהשתתפה אתו בדיון לקח על עצמו את תפקיד המנהיג והמומחהאחד סטודנט נמצא כי שונים. 

או לבחון את נכונותם. ההיגדים המתמטיים הלא נכונים של  הזדמנות להתעמת עם הצהרותיו המתמטיותניתנה לא 

, ואילו הסטודנטית השותפה לא העלתה ביקורת על ההיגדים.  דיההסטודנט התבססו על רמת עיצום לא מתקדמת 

במקרה   ה.אפשרות לבטא את רעיונותי ניתנה להולא  לה כעוקבת,לתפקיד שניתן  האת עצמ מההתאי  יתהסטודנט

 זה, הן הלמידה ברמת האובייקט והן הלמידה ברמת העל נפגעו. 

ל הדיונים בכיתה  ל של כ DDMT-של המשימות, ניתוח ה DMT-ניתוח ה  -העולה ממכלול הניתוח  המסקנה

הזדמנויות הן ללמידה ברמת האובייקט והן  יצרו שפותחו היא שהמשימות  - יםסטודנטוהניתוח של שני זוגות ה

בעיקר המורה. עם זאת, הדיונים בקבוצות קטנות תמכו  מסגרת דיונים במליאה בתמיכתה שלמת העל, בללמידה בר 

השלב בו נמצאו  ו היתה שוויונית קשורת בין הסטודנטיםכאשר התוגם זאת, רק בלמידה ברמת האובייקט, 

דה שיתופית  כלומר, מחקר זה הראה שלמידה מבוססת דיון ולמיבתהליך העיצום אפשר זאת.  הסטודנטים 
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במתמטיקה ברמה אוניברסיטאית יכולה להיות פורה, כאשר לוקחים בחשבון את המשימות, תפקיד המורה, 

 האינטראקציות בין חברי הקבוצה וסוג הלמידה הנדרשת. 

  ,מעשית, מתודולוגית ואמפירית. מעשית, מערכי השיעור והמטלות יכולים לשמש מורים אחרים  תרומהלמחקר זה 

רמה אוניברסיטאית.  מתמטיקה בלנושאים אחרים בדומות ובנות מפרויקט זה ניתן לפתח משימות הת מינוףוב

, וכלי  DMT-ברמה אוניברסיטאית, ה  משימותשל  פוטנציאל מחקר הנוכחי פיתח כלי לבחינת מתודולוגית, ה

לימוד   ורמות נוספיםנושאים לבחינה של לשמש  יםיכולאלו  . כליםDDMT-לבחינת יישום של המשימות, ה

עולה למידה ברמת האובייקט ולמידה ברמת על. ין הבדל ב ה. לבסוף, מחקר זה הראה את החשיבות של מגוונות

להיות מוצלח ללמידה ברמת האובייקט. עם זאת, למידה ברמת על דורשת תמיכה של  יכולעמיתים   ממנו כי שיח

לפיכך,  . השיחים השונים-לחיבור בין תת , ובעיקרמומחה המכוון לכללים המרומזים שהסטודנטים צריכים ללמוד

צריך להיות מותאם להבדל בין למידה   במתמטיקה ברמה אוניברסיטאיתלומד  עיצוב שיעור בהוראה ממוקדת 

 לסוג הלמידה הנדרש.  יות מותאמות, ושיטות ההוראה צריכות לההעלברמת האובייקט ללמידה ברמת 

 

 

 


