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Abstract

Learner-centered teaching supports student engagement in meaningful mathematics, student
collaboration for sensemaking and equitable instructional practices. Studies have described
implementations of learner-centered teaching methods in tertiary settings. However, these
were more focused on students outcomes, rather than on the processes of learning. Moreover,
some researchers claimed there are drawbacks to inquiry-based and discussion-based
teaching. These include learning without an expert, distracting social interactions and
ineffectual communication in groups. Thus, this study had two goals. The first was to adapt
instructional practices, shown to promote discourse-rich explorative participation, to a
university linear algebra setting. The second goal was to examine learner-centered tertiary
teaching and the processes involved to better understand what supports and what hinders
student learning in this setting.

| pursued these goals through the use of the sociocultural commognitive framework, which
has operational tools for describing and analyzing mathematical learning processes. The
framework’s holistic treatment of content, as well as social and teaching-learning
interactions, allowed the examination of whole-class discussions, and learner-learner
interactions in workshops. The workshops were designed as extra-curricular enrichment for
science and engineering students. Data analysis included, first, examination of the potential
of tasks designed for these workshops to support explorative participation. Next, the extent
that opportunities for explorative participation were taken up in the whole classroom
discussion was studied. Finally, the learning processes in small groups of students were
examined.

Based on a previously developed tool named the Realization Tree Assessment, | developed a
tool called the Discourse Mapping Tree (DMT), for mapping the potential of the tasks
through analyzing the subdiscourses that this task would invite. An extension of this tool, the
Discussion Discourse Mapping Tree (DDMT), was used to map the actual implementation of
the task in the whole classroom discussions. The learning processes in small groups were
examined through an analysis of the mathematizing using the DDMT tool and commognitive
tools. The communication channels in students’ peer-learning episodes were also examined.

The DMT and DDMT offered the opportunity to distinguish between object-level learning,
where students develop new narratives about familiar objects, and meta-level learning, where
students make new connections between realizations of objects treated as different. The
analysis revealed that the designed tasks afforded opportunities for both object-level learning
and meta-level learning and, in most cases, the whole-class discussions included numerous
opportunities for meta-level learning. However, the small group discussions did not support
meta-level learning. Object-level learning in peer discussions was supported only when the
students’ communication patterns supported learning and the student’s objectification process
was sufficiently advanced.

This study has practical, methodological and empirical implications. Practically, the tasks can
be used by other instructors and utilizing the insights from this project, new tasks can be
developed. Methodologically, the operational method of examining tasks and mathematical
discussions can be used for other topics and other levels. Finally, this study showed that
lesson-design in inquiry-based teaching should be attuned to the difference between object-



level learning and meta-level learning, and the teaching methods chosen should be suited to
the type of learning required.

List of symbols and abbreviations

RTA — Realization Tree Assessment

A tool used for mapping realizations mentioned during a discussion (Weingarden et al.,
2019). An RTA is a visual representation of realizations of a mathematical object and the
connections between them.

DMT - Discourse Mapping Tree

A tool developed in this study to map a mathematical object by the subdiscourses available.
(Introduced in Section 4.3.1)

DDMT - Discussion Discourse Mapping Tree

A tool developed in this study, based on the DMT, to map the narratives mentioned during a
discussion by the subdiscourses used. (Introduced in Section 4.3.2)



1 Introduction

The Talmudic sages of the Great Assembly codified the Jewish daily prayers and included the
request to give our hearts the understanding to learn, to teach, to keep and to do (Melamed,
2003, Chapter V). This coupling of verbs was meant to emphasize that active involvement is
necessary for productive teaching and meaningful learning (Sherlo, 2020). Additionally, the
Bible exhorts us to teach each student according to his way (Proverbs 22:6), that is to choose
teaching methods that consider the student’s needs. This type of teaching is labelled active,
learner-centered teaching in modern literature, and has been extolled and encouraged by
researchers and practitioners in all types of educational contexts.

Learner-centered instruction, where students are engaged and involved in meaningful
learning activities, includes active learning methods which seek to involve students in
reading, writing, discussing, solving, analyzing, synthesizing, and evaluating problems. These
have proven productive in all levels of mathematics education - K-12 (e.g. Schoenfeld, 2014)
and tertiary (e.g. Chappell & Killpatrick, 2003; Cline et al., 2013; Talbert, 2014; Wawro et
al., 2012). Studies encouraging such instruction in the tertiary level have posited the
importance of student engagement in meaningful mathematics, student collaboration for
sensemaking, instructor inquiry into student thinking and equitable instructional practices
(Laursen & Rasmussen, 2019). Along with the broadening of practical experience of learner-
centered instruction in tertiary mathematics classrooms, the research community has started
discussing the productiveness and suitability of incorporating these types of non-traditional
teaching methods into lectures and tutorials in university mathematics (Shalit, 2021; Wieman,
2007). This discussion includes an international consortiums of mathematics departments
which are developing a community for supporting change in university mathematics
education (Gomez Chacon et al., 2021). The developed and implemented active, learner-
centered workshops presented in this study are part of this effort.

In the present study, workshops were developed to encourage student explorative
participation in linear algebra courses. Student engagement is crucial for all university
mathematics courses, and in particular in linear algebra courses. A student’s success in their
first semester mathematics courses impacts on their confidence and self-motivation -
important factors in student engagement and future success in university courses (Varsavsky,
2010). Varsavsky found that, independent of the level of the student’s previous mathematical
background, the more successful a student was in a first course in university mathematics, the
more advanced mathematics courses the student subsequently enrolled in. On the other hand,
failure in a first course could lead to complete student disengagement from mathematics.
Linear algebra is a mandatory first year course in nearly all post-high school science and
engineering programs, as it is an essential tool for all engineering and science students. Thus,
student success in linear algebra courses is important both for the content, which furnishes
students with tools they need for their future academic and industrial careers, and for the
affective considerations towards their future academic engagement and success.

For the past 25 years | have been teaching tutorials in various university mathematical
courses, mostly in linear algebra. Initially, my teaching practices included solving problems
on the board to model problem solving techniques and formal proof writing. With experience,
my teaching practices evolved to include more active learning and in-class discussions.
Education courses intended for secondary school mathematics teachers exposed to me the



benefits and advantages of active, student-centered teaching methods. Later, | became aware
of the existence of a wealth of documented practices and research in this area. | thus searched
for a means of incorporating these practices into existing linear algebra courses using a well-
defined, methodical approach to support student explorative participation and student
learning and to examine these practices.

In pursuing my goal to design and study these workshops, | needed a holistic theoretical
framework that would allow me to analyze the processes involved in learning and the
mathematical content concomitantly. The process, and not only the outcome, of learning is
important as learning mathematics cannot be described merely by scores on an exam.
Students can solve a task without comprehending the underlying mathematical notions, as
evidenced by their inability to solve a similar task worded differently (Sweller & Cooper,
1985). Additionally, studying mathematical activity from a sociological perspective
highlights the importance of social processes that influence student mathematical learning
(Lave, 1988). The commognitive framework (Sfard, 2008) has a well-defined method of
describing and analyzing learning processes in mathematical classrooms that studies learning
in the context of the social interactions involved and the surrounding culture. This framework
also allowed me to study processes of communication in the classroom, particularly from a
holistic perspective attending to content and social interactions concomitantly (Heyd-
Metzuyanim & Sfard, 2012). Thus, this is the theoretical framework selected to use in this
study.

There were two main goals of this study. One goal was to adapt instructional practices,

shown to promote discourse-rich explorative participation in elementary and secondary
schools, to a university linear algebra course to support and encourage student participation
and learning. Adapting these instructional practices included designing tasks and lesson plans
aimed at promoting discourse-rich explorative participation in tertiary mathematics courses.
These were implemented in discussion-based workshops in linear algebra courses in a science
and engineering university. The second goal was to explore an implementation of the above
adaptation to better understand the processes of learning in university settings in terms of the
content and the social interactions involved.

In the following chapters I first present, in Chapter 2, the theoretical background including
the existing research pertaining to learner-centered instruction in undergraduate mathematics
education, to learning and teaching linear algebra and to teaching practices that support
explorative participation. | next present the commognitive framework, the theoretical
framework used in this study. In Chapter 3 | present the research goals and research
questions, and the methodology used to answer the questions posed is presented in Chapter 4.
The findings of this study are presented in Chapters 5, 6 and 7. Finally, in Chapter 8, |
summarize the findings and the conclusions drawn from these findings pertaining to student
explorative participation in linear algebra.



2 Theoretical Background

In this chapter | first describe learner-centered instruction in undergraduate mathematics and
then focus on learning and teaching linear algebra. Next, teaching practices that encourage
explorative participation are described. The commogpnitive framework is then introduced and
explained. Finally, a short summary of the various aspects involved in this study —
mathematical content, mathematical practice, student participation and their intertwined
connection — is presented.

2.1 Learner-centered instruction in undergraduate mathematics education

Many undergraduate mathematics educators have been incorporating discussion-rich, active
methods into their teaching, even before such methods were formally defined. Already in
1911 the disreputable Prof. R. Moore (Mahavier, 1999) documented his teaching style, which
included student inquiry. More traditional, teacher-centered methods, such as lectures, are
considered cost-efficient, as many students can be taught simultaneously, and exact
formulations of concepts and processes can be presented to the students. Additionally,
lecturing is a means of modelling mathematical discourses (Viirman, 2021). However, the
traditional methods are not necessarily effective for robust learning. Biggs and Tang (2007)
claim that the teaching methods in universities need to be learner-centered, because effective
teaching necessitates that students be engaged and involved in learning activities such as
relating, applying and theorizing — and not just memorizing (Biggs & Tang, 2007). Using
learner-centered teaching methods requires a lot of time and effort from the lecturer, as well
as the cooperation of the students (Legrand, 2001). Yet, the benefits of this type of teaching
to the students’ learning are manifold. Exam outcomes were positively impacted in first year
engineering mathematics courses from deep learning behavior (Griese & Kallweit, 2017).
Students learning in more learner-centered mathematical university courses displayed higher
self-efficacy levels and experienced the learning environment more favorably (Lahdenpera et
al., 2019).

Learner-centered teaching includes practices that support students actively taking charge of
their own learning, becoming self-regulated, and developing their own study paths (Pepin et
al., 2021). Learner-centered teaching practices can benefit student learning, attitudes, success
and persistence in mathematics and related fields (Laursen & Rasmussen, 2019), among other
positive outcomes (Griese & Kallweit, 2017; Ju & Kwon, 2007; Lahdenperé et al., 2019;
Laursen et al., 2014). There have been various interventions in university courses attempting
to provoke student engagement and involvement using learner-centered teaching methods.
There are many studies focusing on active teaching methods in various scientific disciplines
(e.g. Kimmel & Volet, 2010; Tal & Tsaushu, 2018). Some examples of various learner-
centered methods incorporated in mathematics courses include classroom voting via
technological aids (Cline et al., 2013), Project Based Learning (Talbert, 2014) and flipped
classrooms (Love et al., 2014). These, and other active teaching methods, have been used to
support student engagement, evoke student motivation and allow students to work on
complex tasks with the active guidance of an instructor (Talbert, 2014). These were most
successful, as measured by student academic success, when implemented in courses which
also modified the curriculum and the assessment methods to accommodate the teaching
method (Vithal et al., 1995).

The studies describing the implementations of learner-centered teaching in tertiary
mathematics classrooms focus mainly on the teaching methods and the outcomes of these
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implementations. Below | describe in more detail some implementations that used group
learning episodes and discussion as part of their learner-centered teaching methods in tertiary
mathematics classes.

Rasmussen and Kwon (2007) implemented learner-centered instruction in an undergraduate
differential equations course by designing inquiry-oriented instructional sequences with
resources and teacher materials. They report that students’ participation in an implementation
of this contributed to a positive transformation in the students’ beliefs about mathematics and
themselves as participants in mathematical discourse (Ju & Kwon, 2007). Ju and Kwon posit
that this was due to real context problems, the emphasis on students’ own resources, the
instructor’s guidance in developing a sense of authorship and ownership of knowledge and
the decentralized structure of the course. Moreover, they explain that these practices
supported new understandings of students, at a higher level.

Discussion based teaching has been suggested as a learner-centered method that supports
meaningful student participation in mathematical discussions. Tabach and colleagues
(Hershkowitz et al., 2014; Tabach et al., 2020) used such an approach in both middle school
and tertiary mathematics classrooms and analyzed them using a networking of two methods
to examine collaborative mathematical activity in such a context. Both episodes included
small group discussions and whole class discussions. The tertiary episode in a differential
equations course was part of a larger study examining undergraduate student learning
(Stephan & Rasmussen, 2002). This approach was used to support students’ meaningful
mathematical activity of recreating mathematical ideas in a bottom-up manner. Stephan and
Rasmussen characterized the collective learning in this context in terms of the mathematical
practices, specific to differential equations, that emerged during the many sessions in a
complex, non-sequential, non-linear manner. Hershkowitz and colleagues (2022) also used
this classroom procedure of discussion in small groups and then reporting to the class about
properties of fractals. The discussion about these infinitely constructed objects demonstrated
that this method was successful and sparked meaningful discussions that supported student
learning.

In addition to the success of the various implementations described above, Laursen and
colleagues (2014) compared more traditional teaching with Inquiry Based Learning (IBL),
which is a learner-centered teaching practice that uses carefully designed sequences to invite
students to work out meaningful, unstructured problems. They used quantitative analysis and
found that there were greater learning gains in IBL and equitable results with respect to
gender. Additionally, student interest and confidence levels rose in IBL courses, and this too
also displayed no difference between genders, as opposed to non-1BL courses that usually
display gender-based differences. They suggest that this is due to the different characteristics
of teaching practices involved that support deep engagement with meaningful mathematics
and collaborative processing of mathematical ideas.

Along with the advantages of learner-centered teaching, there are also some deterrents in
active, group-based learning described in the literature. First of all, time constraints and
financial resources must be taken into consideration when planning to incorporate such
methods into university courses (Talbert, 2014). In addition, there is an inherent risk that
learning without an expert might be arbitrary and not advance toward the planned goal
(Vithal et al., 1995). Another factor inhibiting learning in group work is affective
considerations. Unequal identities of gender, race and the like affect learning outcomes and
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collaboration in STEM education at university levels (Carlone & Johnson, 2007; Johnson et
al., 2020).

To conclude, many implementations of learner-centered teaching, and specifically,
discussion-based teaching and group learning activities, in tertiary mathematics have
supported student learning, student interest, student confidence, student outcomes and student
engagement. The studies documenting these examined aspects of teacher activity, adapted
innovative instruction to the undergraduate level, and studied student thinking. They
discussed positive academic outcomes and also positive outcomes such as meaningful
participation, creation of new understandings, and meaningful mathematical activity. These
studies rarely examine holisiticly the design of the tasks set by the instructor, the instructor’s
implementation of the design, the students participation, the mathematical content and the
intertwining of all of these. Little is known about how these various aspects encourage
explorative participation. This is particularly important in linear algebra, where less is known
about how such participation is involved in tertiary level mathematics learning processes.

2.2 Learning and teaching linear algebra

Linear algebra is a compulsory first year course in nearly all post-high school science and
engineering programs, as it is an essential tool for all engineering and science students.
Students’ success with their first mathematics courses impacts on their confidence and self-
motivation - important factors in student engagement and future success in university
mathematics courses (Varsavsky, 2010). Varsavsky found that, independent of the level of
the student’s previous mathematical background, the more successful a student was in a first
course in university mathematics, the more advanced mathematics courses the student
subsequently chose to learn. On the other hand, failure in a first course led to complete
student disengagement from mathematics. Thus, supporting student learning in linear algebra
courses, which are often the first mathematics courses students enroll in, is vital for the
students’ future academic career, both for the mathematical tools and content learned in the
course and for the affective impact on their learning in other courses.

Some research has been done on learning and teaching university level linear algebra,
including studies of the difficulties students face and the types of thinking necessary for a
students to gain conceptual understanding (Britton & Henderson, 2009; Harel, 2002). Dorier
and Sierpinska (Dorier & Sierpinska, 2001; Selinski & Rasmussen, 2014; Sierpinska, 2000)
claim that lecturers should explicitly state that assorted mathematical representations are the
same object so that the student is aware of the equivalence of the various representations
being studied. If a student comprehends that all the representations are indeed the same thing,
student understanding and conceptualization of mathematical structures is promoted
(Grenier-Boley, 2014; Harel, 2002). Thus, the student comprehends that the structures can be
transformed, represented in different ways, and considered as being -- or not being --
isomorphic (i.e. mathematically equivalent) to other structures (Hillel, 2000). As | will later
review, this necessity for more conceptual understanding can be met by learner-centered
instruction. Thus, student participation in mathematical discussions in a thoughtful and
profitable manner may promote the comprehension of these representations (Sfard, 2008).

Students face difficulties grasping the skills and concepts in linear algebra courses (Chang,
2011). Even students who excel in other courses often have a difficult time with linear
algebra courses (Dubinsky & Leron, 1994). Harel (2017) explains these difficulties by noting
that learning linear algebra includes learning about mathematical objects that have many



representations and techniques for manipulating them. These objects—including matrices,
linear equations, vector spaces and linear transformations—are all related and connected. One
of the main conceptual challenges for students is the necessity of learning and understanding
concepts, rather than computational algorithms (Britton & Henderson, 2009). Linear algebra
is characterized by many abstract mathematical concepts that have no visual representations
with intricate connections between them (Talbert, 2014). Students tend to think mathematics
consists of a set of distinct topics that are compartmentalized (Ang, 2001), but in fact they are
intricately connected. Another challenge for students was that while solving problems,
students focused on the limited procedures from what they remembered, and this inhibited
other approaches being attempted (Lithner, 2000).

2.3 Teaching practices that encourage explorative participation

There are assorted ways that a teacher can encourage and support explorative participation.
Explorative participation, which will be more accurately defined later in this chapter, is
characterized by autonomous student participation whose goal is to author mathematical
narratives. This section describes teaching practices involved in discussion-based learner-
centered teaching methods, including the learner-centered ones briefly described earlier. This
includes the tasks given to the students, the teaching practices that support a meaningful
discussion, and group-based learning. These are discussed in the next sections.

2.3.1 Mathematical tasks that support explorative participation

Teaching mathematics includes posing questions — written or spoken, for individual or group
work, for classwork or homework, and for assessment or formative pedagogical goals. These
questions, or tasks, may offer more or less opportunities for students to engage with
mathematical concepts, ideas, and strategies (Sullivan et al., 2015). Many inquiry-based tasks
are aimed at constructing cognitive conflicts, commognitive conflicts or boundary objects
(Sfard, 2021) to elicit from the students the need for new mathematical objects, for new rules
or for amending familiar ones. Once the students are motivated to adopt new narratives, new
objects and new rules, they still need to actually adopt them and engage with them.
Therefore, tasks geared towards this are also necessary.

Various considerations are mentioned in the literature for choosing tasks included in tertiary
classrooms promoting learner-centered teaching. These considerations include using real
world problems (Chang, 2011), ensuring conceptual inclusiveness (Stewart & Thomas, 2009)
and providing the students with the opportunity for engagement in disciplinary practices
(Zandieh et al., 2017). These do not provide operational characteristics of the tasks
themselves.

One of the important considerations of tertiary task design is a high level of cognitive
demand (Tekkumru-Kisa et al., 2020). A high level of cognitive demand in K-12 schools was
defined by Stein and her colleagues as “tasks that involve ... the use of formulas, algorithms,
or procedures with connection to concepts, understanding, or meaning” (Stein et al., 1996, p.
467). Previous studies, in K-12 levels, have shown that tasks that support discussions, as part
of learner-centered teaching practices, should be aimed at expanding students’ mathematical
experiences and invite students to deeper engagement (Koichu & Zazkis, 2021). These also
do not provide operational characteristics of the task itself.

Other studies briefly describe why they chose the specific tasks used. For example,
Weingarden et al (2019) used “the hexagon task” in middle schools because it had multiple
solution paths, was challenging and engaging for the students, and it was previously shown
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that it produces rich whole-classroom discussions. These do not describe what characteristics
of the task support learning and how the characteristics mentioned do support discussions.
Cline and his colleagues (2013) described multiple choice questions they used to provoke
discussions in a linear algebra classroom as “difficult questions” that required “interpreting
calculations”. These terms are not well defined, and the 6 specific tasks provoked a
discussion since the students did not answer homogenously. Yet what were the characteristics
of these tasks and was the discussion academically fruitful or just voluble? Hershkowitz and
colleagues (2022) describe how the task about fractals they used successfully provoked a
classroom discussion. They suggest that the task supported an inquiry-based discussion since
the task had a low entry point, that is it was simple to understand, but a high ceiling, that is
the discussion’s mathematical level was quite high. None of these reviewed studies, however,
provided, in a well-defined manner, how these tasks provide opportunities for explorative
participation.

Smith and Stein (1998) list characteristics of tasks of high levels of cognitive demand, that
engage students in a manner that increases students’ ability to think and reason. They explain
that such a task requires complex and non-algorithmic thinking, requires students to explore
ideas, demands self-monitoring, requires students to access relevant knowledge and analyze
the task, and requires considerable cognitive effort. These characteristics mainly describe the
implementation of the task, as seen by the wording that they require certain actions on part of
the students. The implementation of the task is an integral part of the cognitive demand in
this list of characteristics. Stein and colleagues (1996) distinguish between tasks that demand
student engagement at various levels, where the deepest level of engagement includes
interpretation, flexibility, shepherding of resources, and construction of meaning. That is,
there are tasks, independent of the implementation, that can support more explorative
participation and there are tasks, independent of the implementation, that support less
explorative participation. In this study | searched for characteristics of the tasks themselves,
as a necessary but not sufficient condition for the tasks being implementable in a manner that
supports explorative participation. | needed operational criteria to support my design of
appropriate tasks to use in the workshops.

2.3.2 Teaching practices that support discussion

Beginning a discussion with an appropriate task is necessary for a meaningful discussion, yet
the instructor should also promote conceptual understanding and successful problem solving
throughout the lesson (Smith & Stein, 1998). These teaching practices should include actively
supporting meaningful mathematical participation, supporting student struggle in building
understanding, emphasizing connections between procedures and concepts, and soliciting
student thinking (Schoenfeld, 2014). Stein and her colleagues identified five specific
instructional practices for implementing mathematical discussions in elementary and middle
school classrooms as part of a launch, explore and discuss (LED) lesson. These lessons start
with a launch of the topic and the task, give the students opportunity to explore the task in
small groups and then discuss the solution in a whole class discussion. This framework
encourages construction of ideas, guides student thinking and teaches mathematical discourse
(Smith & Stein, 2011; Stein et al., 2008). These practices can be done in advance and during
class discussions and offer teachers more control over the content of the discussion and lessen
the improvisation inherent in orchestrating discussions based on various student ideas.

The five practices listed by Stein and her colleagues (2008) are anticipating what students
will do, monitoring their work in class, selecting students’ strategies that are worth discussing
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in class, sequencing students’ presentations, and connecting the strategies and ideas.
Anticipating what students might do, what questions they might ask, and what difficulties
students might have enables teachers to prepare for class more effectively. This also enables
teachers to answer students with a well-thought-out answer that was prepared in advance
(Fernandez & Yoshida, 2004; Schoenfeld, 1998). Teachers can include the mathematical
ideas and strategies that students are using by monitoring their work, noting the students’
work, and identifying the strategies being used (Lampert, 2001). Monitoring also includes
asking assessing and advancing questions, to focus students on the specific problem and to
help students progress towards a solution (Schoenfeld, 1998). Once students’ ideas are
identified and noted, a teacher can select those that are worth discussing in class. By selecting
what to discuss, a teacher can direct the discussion towards the intended mathematical
content and not be surprised by a different topic being discussed (Lampert, 2001).
Sequencing the presentations in a logical way that builds a mathematically coherent story line
can help students follow the flow of the ideas being introduced, maximizing the potential to
increase student learning (Schoenfeld, 1998). Connecting the strategies and ideas discussed in
class to each other and to the context allows a student to work at different levels, to obtain a
sense of the larger picture, and to deepen understanding of a topic (Brendefur & Frykholm,
2000; Lampert, 2001).

Hiebert and Grouws (2007) stress the importance of connecting strategies and ideas in
mathematics classrooms. They define teaching as interactions among teachers and students
around content directed toward facilitating student achievement of learning goals, such that
the most valued learning goals are student struggle and conceptual understanding. They
suggest that conceptual understanding grows as mental connections become richer and more
widespread. They suggest public noting of connections among mathematical facts to foster
this. Noting connections among mathematical facts can be achieved by discussing the
mathematical meaning underlying the procedures, by noting how different solution strategies
are similar or different, and by reminding students of the main point of the lesson and how
that point fits into the big picture.

Meaningful mathematical discussions must be instigated, guided and supported through
appropriate moderation and talk moves (Michaels et al., 2008). Student mathematical activity
is based on what is considered appropriate mathematical and social behavior in their specific
classroom (Boaler & Greeno, 2000). There are mathematical and social norms that constitute
the expected behavior in the classroom. Socio-mathematical norms are social norms that are
specific to the mathematical aspect of the students’ activity such as what counts in the
classroom as mathematically different, mathematically sophisticated, mathematically
efficient, mathematically elegant and mathematically acceptable (Cobb & Yackel, 1996). For
example, if a student asks why a statement is correct and the teacher responds, “that’s the
formula”, then the socio-mathematical norm that “that’s the formula” is an acceptable
justification is constructed. If, instead, the teacher explains why this formula is true, then the
socio-mathematical norm of what is an acceptable and sufficient justification will be
constructed differently. These norms are constructed by the expectations of the teacher,
student responses, and the interactions between the two (Cobb & Yackel, 1996). Teachers can
use verbal and facial cues to guide the conversation and to emphasize logical connections and
reasoning (Michaels et al., 2008), which would support explorative participation.
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2.3.3 Collaborative group learning

Many learner-centered methods, including discussion based teaching, include collaborative
learning sessions in which various learners work together toward a common goal. It has been
suggested as a classroom practice that encourages active learning and deeper engagement
with the academic content and is a crucial working skill in the 21% century workplace
(Barron, 2000).

In a university setting, collaborative learning, although less researched then in primary and
secondary education settings, has been shown to promote positive social and academic
outcomes (Cabrera et al., 2002). The benefits of collaborative learning cited in the literature
include encouraging discovery, fostering student engagement, promoting student agency,
advancing communication and collaboration skills, and fostering appreciation for many
solution paths to a correct answer (Barron, 2000).

Yet, along with this long list of potential advantages, some researchers have pointed to the
problems that can exist in student collaboration. These include distracting social interactions
between members (Barron, 2000) and ineffectual communication (Nilsson & Ryve, 2010;
Sfard & Kieran, 2001). Studies point to the existence of a connection between effective
collaborative learning and the affective, social aspects of mathematical learning. The
coordination between group members working together toward a common goal necessitates
mutuality in the interaction, a shared task, and joint attention at critical moments (Barron,
2000). In middle school mathematics, it has been posited that ineffectual communication
between participants can hinder mathematical progress (Sfard & Kieran, 2001). Motivational
issues can also influence participation in a collaborative episode (Wood & Kalinec, 2012).
Thus, collaborative learning sessions, although they have advantages, must be used
thoughtfully.

2.4  Commognition

2.4.1 Choice of commognition as theoretical framework

The commognitive framework (Sfard, 2008) is a socio-cultural discursive theory, tailored
specifically for mathematics, which enables the examination of the mathematical content and
the learning processes involved in mathematical learning. This framework is inspired by
several socio-cultural theorists, the most notable of them being Lev Vygotsky. Vygotsky
(1978) explains that social interaction, such as interacting with other learners and with
experts, fosters intellectual development. Studying mathematical activity from a socio-
cultural perspective highlights the importance of social processes that influence student
mathematical learning (Lave, 1988).

The commognitive framework has a well-defined method of describing and analyzing
learning processes in mathematics classrooms. It has been shown to be productive for
studying processes of communication in the classroom, particularly from a holistic
perspective attending to content, social interaction and affect concomitantly in primary and
secondary schools (Heyd-Metzuyanim, 2015; Heyd-Metzuyanim & Sfard, 2012; Sfard &
Kieran, 2001). The commognitive framework was also found to be an effective tool for
studying various aspects of university level mathematics (Nardi et al., 2014). The
commognitive framework has also been used to study teaching processes (Nachlieli &
Elbaum-Cohen, 2021; Viirman, 2013). This framework is thus appropriate for studying the
varied aspects of tertiary mathematical classrooms — teaching, learning, participation and
tasks — and their interconnections in a well-defined manner.
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2.4.2 The main tenets of the commognitive framework

The commognitive framework defines learning as changing one’s discourse, as part of
becoming a participant in a certain community (Sfard, 2008). Discourse is defined within this
framework as “set apart by its objects, the kinds of mediators used, and the rules followed by
participants and thus defining different communities of communicating actors” (Sfard, 2008,
p. 93).

Mathematical discourses are hierarchical and recursive, where their objects (e.g. rationale
numbers in Q) are built upon previously established objects (e.g. whole numbers in Z) (Sfard,
2008). Sfard maintains that historically, new mathematical discourses were created either by
several familiar discourses coalescing into one discourse or by a meta-level discourse
subsuming an older one. This historical process, according to Lavie and Sfard (2019) may be
reconstructed in the development of students’ individualized discourse. When learners
progress from one discourse to a subsuming one, the subsuming discourse includes an
isomorphic copy of the old ones, as well as new objects and narratives that can only be
realized in the new discourse.

Adapting this theory to the domain of linear algebra, one can observe that there are multiple
discourses in this domain that first have to be adopted, and then coalesced into one single
subsuming discourse. | exemplify this process on the mathematical notion of systems of
linear equations (SLE). Historically, there are several different domains that represent SLEs,
as described by Andrews-Larson (2015). Originally, systems of constraints on everyday
problems were described verbally. Next, linear systems and their solutions were described by
Chinese mathematicians in 200 BC and by Gauss (early 19™ century) without matrix
notation. Significant advances in notation, including matrices and determinants, led to SLES
being described as mathematical objects, and not merely as a process to a solution. This
allowed SLEs to be represented by their properties. The modern, formal, axiomatic
definitions of relations and operations on vectors utilizes vector spaces and linear
transformations to describe SLES. In accordance with this historical development of the
representations of SLEs, we can divide the various narratives that can be authored regarding
SLEs into five main domains - the solution set (constraints), a list of equations, matrix
notation, properties of SLEs and vector spaces and transformations.

Nachlieli and Tabach (2012) theorized the learning of functions in middle school as first
becoming proficient in multiple subsumed discourses, such as algebraic symbolic
expressions, graphs and tables, and then becoming proficient in the unified discourse of
functions. Similarly, | theorize that the learning SLEs, as part of a linear algebra course,
includes becoming proficient in each of the discourses listed above and producing narratives
within them, and ideally, then eventually coalescing these separate discourses into one
unified discourse of SLEs. Following this theorizing of learning SLEs, this theoretical
framework of learning can be used to describe learning for all topics in linear algebra.

2.4.3  Objectification

According to commognition (Sfard, 2008), learning mathematics involves familiarizing
oneself with discursive objects that only exist in socially constructed discourse. The words or
symbols that are used in the discourse are termed signifiers. Realizations of a signifier are
expressions that are all interchangeable, which are all treated in experts’ mathematical
discourse as denoting "the same" object (Sfard, 2008). For example, the object “two”, which
is the number you reach when counting two apples and is a product of counting, can also be
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signified by the numeral 2. This object can also be realized using additional signifiers such as
by 4/2, 1+1, and V 4. Another example is the signifier "vector space” which can be realized
by an algebraic expression describing its general element (e.g. {(X,y,-X-y) | X,y € F}), by a
linear span of one of its many bases (e.g. Sp{(1,-1,0),(0,1,-1)} ) or by the solution of a
homogenous system of linear equations (e.g. x+y+z=0). Mathematical discourse consists of
narratives about realizations of signifiers and manipulation of those signifiers.

Objectification happens when students come to communicate about mathematical symbols

(e.g. V1) as representing objects in the world (e.g. “the set of complex numbers which divide
the unit circle into 8 equal parts”). The objectification process includes substituting
descriptions of actions and processes with descriptions of the products of these processes as if
they occurred without the participation of human beings (Sfard, 2008). Saying “there are four
cookies” is a reified restatement of “when I recite the counting chant and point to each
cookie, I end up at four”. We state that a triangle is encircled instead of saying that we drew a
circle around a triangle. Instead of discussing “the values that a person plugs into a
polynomial to achieve 0”, we can discuss the “roots of a polynomial”. Objectification
eliminates both the process that created the object and the author of the process, allowing
these objects to be discussed as if they exist regardless of human action.

One of the main challenges in learning mathematics stems from the need to form narratives
about mathematical objects, which one has not yet objectified. When a student has not
objectified the objects involved in the discourse, participation in that discourse can be done at
first only by imitation of more knowledgeable experts (Sfard, 2008). Saming the different

realizations of an object (e.g. 1 + i and v2cis(n/4)) is an essential step towards such
objectification. This occurs when students come to see two or more realizations of a
mathematical signifier as exchangeable and equivalent (Sfard, 2008). This is based on the
fact that endorsed narratives using one realization (the parabola cannot meet the x axis in
more than two places) is endorsable when translated to a different realization (ax? +bx +c has
at most 2 roots).

Endorsable narratives that can be samed can be from within a single discourse or from two
disparate discourses (Sfard, 2008). Similarly, the saming of realizations of an object can
occur between realizations from within the same discourse or from within different
discourses. Weingarden and colleagues (2019) describe saming between two algebraic
expressions 4n+2 and 6n-2(n-1) of the perimeter of n connected hexagons. In this case, the
signifiers, keywords and metarules are the same. These narratives are from within a single
discourse and links between them are denoted as vertical by Weingarden and Heyd-
Metzuyanim (2019). They also describe saming between a table of values and the above
algebraic expressions to describe the perimeter of the aforementioned train of hexagons. The
table of values is from within a separate discourse, as it uses different signifiers, different
keywords and different metarules. This saming is denoted as horizontal by Weingarden and
Heyd-Metzuyanim.

Saming realizations of objects with vertical links, within a discourse, extends the discourse.
Saming realizations with horizontal links, in between discourses, authors narrative from the
subsuming discourse, which is a coalesced discourse of all the subsumed discourses. This
coalesced discourse includes narratives that are endorsable in all the subdiscourses and new
narratives (Sfard, 2008). For example, the discourse of functions subsumes the discourse of
algebraic formulas, of curves and of physical processes and includes narratives that can be
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endorsed in all of these discourses and narratives that include pieces of narratives from
multiple discourses (Sfard, 2008, p. 174). This can also be exemplified in linear algebra in the
complex numbers discourse. The narrative z = 1+i is a narrative from within the discourse of
algebraic notation of complex numbers, which is a subdiscourse of the discourse of complex

numbers. The narrative z = v/2cis(n/4) is from within the discourse of polar representation of
complex numbers, another subdiscourse of complex numbers. Authoring the narrative that

these are the same, i.e. 1 + i = v/2cis(w/4), is a narrative from within the coalesced discourse
of complex numbers, which includes the subdiscourses of algebraic representation of
complex numbers and polar representation of complex numbers. It cannot be authored in any
of those subdiscourses, as it is constructed of pieces of narrative that can only be authored in
different subdiscourses. Thus, saming realizations of an object consists of authoring
narratives in a new, coalesced discourse (Lavie & Sfard, 2019).

2.4.4  Mathematical routines and narratives

Mathematical learning, according to the commognitive theory, is the process whereby
learners develop and refine their participation in the mathematical discourse by authoring
narratives in familiar discourses and then, based on that, authoring narratives in new
discourses (Sfard, 2008). These narratives include descriptions of mathematical objects and
their properties and descriptions of manipulations of these objects (Sfard & Lavie, 2005).

Routines can result in narratives about properties of objects, such as finding the equation of a
linear function from a table of values results in the narrative “the equation is y=ax+b” (Sfard,
2008) or finding a solution to an equation and stating, “the solution of x?=9 is + 3”. Lavie,
Steiner and Sfard (2019) define mathematical routines as a task and procedure pair used by a
student to achieve a certain goal. These authors differentiate between the task situation,
which is the way that a task-poser (such as the teacher) defines the task and the task, which is
the way the task performer (learner) interprets the task. To exemplify this, examine the
question posed by a teacher in middle school whether two given triangles are “the same”
(Ben-Dor & Heyd-Metzuyaninm, 2021). The task situation was to determine if the triangles
are congruent, and a student interpreted the task to be if the triangles are the same size. The
procedure used by the student was to estimate the length of the sides of the triangle. Thus, the
student’s routine was to determine if the triangles are the same size by measuring them.
Whereas the teacher’s intended routine was to use geometric theorems to prove congruence.
The students’ learning processes can be examined through their routines.

An important distinction made in commognition around routines and the rules governing
them, is between object-level rules and meta-level rules (Ben-Zvi & Sfard, 2007). Object-
level rules deal with mathematical objects and how to manipulate them, such as how using
scalars to multiply vectors would cancel them out. Meta-level rules, or metarules, define the
patterns in the activity of the discourse and are custom-sanctioned, rather than externally
imposed (Sfard, 2008). These are the rules about rules that constrain how to establish object-
level narratives. Usually, metarules are variable, tacit, perceived as normative, constraining
and contingent (Sfard, 2008). They can be rules pertaining to what type of answer is
expected. For example, for a question starting with “how many”, it is perceived as normative
to answer with a quantifying phrase. They can be rules pertaining to what is considered a
sufficient justification. For example, in a university classroom it is tacit that x+x = 2x, which
would not be the case in middle school. Metarules become object-level rules once the
discourse is adopted (Sfard, 2008).
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Recent commaognitive works have differentiated between two types of meta-level rules.
Nachlieli and Elbaum-Cohen (2019) name them executive metarules and object related
metarules. Sfard defined metarules as “patterns in the activity of the discursants trying to
produce and substantiate object-level narratives” (Sfard, 2008, p. 201). This definition aligns
with metarules for what is considered an acceptable proof and was labelled by Nachlieli and
Elbaum-Cohen as an executive metarule. These type of metarules change and evolve. For
example, the rules of what is considered an acceptable proof evolve from visual arguments in
elementary school to formal, deductive proofs in university (Ben-Dor & Heyd-Metzuyaninm,
2021). Metarules are also defined by Sfard as “rules that define patterns in the activity of the
discursants” (Sfard, 2008, p. 299), not necessarily about how to substantiate narratives. This
definition pertains to rules specific to the object being studied. For example, multiplying by a
whole, positive number makes the product bigger, which is not the case when multiplying by
a fraction (Nachlieli & Elbaum-Cohen, 2019). Another example of a rule specific to an object
is commutativity of multiplication. It is an object related metarule for authoring narratives
about scalars. In contrast, this metarule is non-canonical in matrix multiplication. These types
of metarules were labelled by Nachlieli and Elbaum-Cohen as object related metarules.

2.4.5 Object-level learning and meta-level learning

In object level learning, students gradually produce (or endorse) an increasing number of
narratives about familiar mathematical objects (Sfard, 2008). Most learning occurs through
object-level learning, however when new mathematical objects and new rules of discourse
are introduced, the learning is meta-level and requires a change in meta level rules. Barnett
(2022), using the commaogpnitive framework, differentiated between types of learning by
describing endogenous growth and exogenous growth. Endorsing new object level narratives
within a discourse, when there is no change in metarules, is endogenous development.
Exogenous growth involves the adoption, or significant modification, of metarules.

Within exogeneous development there is a distinction between horizontal and vertical
development (Barnett, 2022), which aligns with Nachlieli and Elbaum-Cohen’s (2019)
distinction between types of metarules. Exogeneous horizontal development occurs when a
number of previously separate discourses subsume into a single new discourse. Barnett
exemplifies this with describing how modern graph theory subsumed electrical circuit design,
recreational puzzles and map colorings. Exogeneous vertical development combines an
existing discourse with its meta-discourse, that is with new metarules about proving. Barnett
(2022) exemplifies this by describing Dedekind’s creation of new ways of proving (by using
new mathematical objects of ideals instead of a number). Meta level learning happens both
vertically and horizontally.

Learning linear algebra, like all learning, is becoming fluent in the discourse of linear algebra
(Sfard, 2008). This includes becoming fluent in all the subdiscourses of this topic (such as
matrices, systems of linear equations, vector spaces, etc.) and saming the realizations from
the various subdiscourses. Learning linear algebra involves object-level learning by authoring
narratives within a discourse. For example, producing narratives about different matrices by
using routines tailored for matrix manipulation (e.g. reducing a matrix to Echelon form).
Learning linear algebra also involves meta-level learning, both vertical and horizontal. The
vertical metalevel learning includes adopting more general mathematical metarules of proof
and justification, rules labelled executive metarules (Nachlieli & Elbaum-Cohen, 2019). The
horizontal meta-level learning includes adopting new coalesced discourses and object related
metarules.
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Previous studies (not within the commogpnitive framework) have stressed the importance of
making students of linear algebra aware of the equivalence of the various representations
being studied (e.g. Selinski & Rasmussen, 2014). This shows that horizontal meta-level
learning, i.e. adopting new, coalesced discourses, is probably ubiquitous in linear algebra
classrooms. An example of such learning in linear algebra would be familiarizing oneself
with the routines of manipulating vectors as elements of vector spaces and saming these with
the routines in the discourse of n-tuples. The meta-level learning required includes adopting
the discourse of vector spaces and making the meta-level shift to the new meta-level rules in
the new, coalesced discourse. In commenting on tertiary mathematics in general, Thoma and
Nardi (2018) point out that first year mathematics courses include many meta-level shifts,
due to the numerous new mathematical objects introduced, the rules governing their
manipulation, and the metarules of formal proof that are unfamiliar to graduates of secondary
school. This can be applied to linear algebra as well, which includes many new objects, new
procedures and formal proof construction (Malek & Movshovitz-Hadar, 2011). Learning in
linear algebra involves adopting executive metarules in vertical exogeneous development,
adopting object related metarules in horizontal exogenous development and adopting new
object level narratives in endogenous development.

2.4.6 Ritual and Explorative Participation

As reviewed above, learning mathematics, according to commognition, includes meta-level
shifts to new discourses. The shift involved in meta-level learning can often be done at first
only ritually, that is, by imitation of more knowledgeable experts (e.g. Sfard, 2007a). This
ritual entrance into a discourse stems from the fact that the learner of a new discourse (e.g. C)
is faced with a seemingly impossible task of communicating about discursive objects
(“complex numbers”) that do not yet exist in his discourse. Ritual participation is
characterized by manipulation of mathematical symbols focused on the procedure rather than
on the final narrative about the mathematical object (Sfard & Lavie, 2005). The counterpart
of ritual participation is explorative participation, which is characterized by taking part
autonomously and creatively in the discourse. The goal of ritual participation is usually to
please others, while the goal of explorative participation is to produce mathematical
narratives (Heyd-Metzuyanim & Graven, 2015). Another hallmark of explorative
participation is objectification of mathematical objects in the discourse, that is mathematical
objects exist independent of processes and new narratives pertaining to these objects are
authored (Sfard & Lavie, 2005).

Student participation gradually progresses from ritual participation to explorative
participation (Lavie et al., 2019; Sfard & Lavie, 2005). A student who participates ritually in
the conversation can implement memorized procedures but is not able to construct new
narratives about the object nor to flexibly choose alternative procedures for substantiating a
narrative about the object (Sfard, 2008). The differentiation between ritual and explorative
behavior is not discrete, rather student mathematical actions can be characterized on a
continuous spectrum between the two (Lavie et al., 2019; Viirman & Nardi, 2019).
Continuous ritual participation, that does not evolve into explorative participation, generally
produces mathematical failure (Heyd-Metzuyanim, 2015).

A necessary, but not sufficient, condition for explorative mathematical participation is
appropriate opportunities to learn (Kilpatrick, Swafford, & Findell, 2001; Nachlieli &
Tabach, 2019). Opportunities to learn (OTLs) are circumstances that allow the students to
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engage in and spend time on academic tasks. The task that is presented needs to be suitable,
as different tasks will create different opportunities to learn.

2.4.7 Explorative Instruction

Explorative instruction is instruction that affords students opportunities for explorative
participation (Weingarden et al., 2019). Such teaching has been described in mathematics
classrooms in elementary schools (Baor, 2020), middle schools (Nachlieli & Tabach, 2019;
Weingarden et al., 2017) and secondary schools (Nachlieli & Elbaum-Cohen, 2021).
Explorative teaching was described as, “Teachers’ actions that provide students with tasks
that could not be successfully solved by performing a ritual. Rather, a successful completion
of the task can only be achieved by participating exploratively” (Nachlieli & Tabach, 2019, p.
257). In contrast, teaching that affords only opportunities for ritual participation is
characterized by instructional routines that focus on procedures and afford little opportunities
for students to author their own narratives (Weingarden et al., 2019).

Weingarden and colleagues (2019) examined classrooms discussions and assessed them for
explorative participation of the students. They mapped the realizations mentioned during a
discussion; which links between realizations were authored during the discussion; and who
authored these by using an RTA (realization assessment tool). An RTA uses the notion of an
object being a “signifier together with its realization tree” (Sfard, 2008). It is a visual
representation of realizations of a mathematical object and the connections between them.
Once the mathematical object in the discussion is determined, an RTA can be constructed.
This includes listing the object’s realizations, determining the possible relations between
them, grouping together realizations of similar types and determining which realizations and
links were authored in the discussion and by whom.

Weingarden and colleagues (2019) describe a mapping of a discussion in a 7*" grade class
asked to describe the perimeter of a train of n hexagons. After the students worked in small
groups for 35 minutes, they presented their solutions to the class. One student explained his
group’s solution of 4x+2. The student used a visual realization and pointed to a picture on the
board depicting the train of hexagons. The student also used a verbal realization and
described the perimeter of the train. Finally, the student used an algebraic realization and
authored the narrative 4n+2. This student also explained the connections between these
realizations and thus authored links between them. The RTA drawn for the discussion is in
Figure 2-1, below.
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Figure 2-1 7th grade discussion mapped by RTA (Weingarden et al., 2019)

The RTA mapping affords an operational description of explorative instruction. That is,
explorative instruction gives students opportunities and agency to construct narratives about
mathematical objects, presenting different realizations for mathematical objects, and
authoring links between these realizations. Similarly, the potential of a task for explorative
participation can be operationally defined as the existence of the possibility of presenting
different realizations for mathematical objects and the possibility for authoring links between
these realizations.

Previously I described two types of saming realizations — within a discourse and in between
two discourses. Authoring links in between realizations within the same discourse is object
level learning, as this is adopting a new narrative within a discourse. Authoring links between
realizations that are in different discourses is authoring a narrative from the new coalesced
discourse, and is horizontal exogeneous development, that is meta-level learning. Learning
mathemtics encompasses both object-level learning and meta-level learning, but explorative
instruction has not been examined in detail with relation to object-level or meta-level
learning. There are some suggestions that meta-level learning necessitates ritual participation,
as a student cannot participate exploratively in a new discourse (Sfard, 2008). This needs
more study.

2.4.8 Commognitive theorizing of group learning

As explained above, explorative instruction methods, like other learner-centered methods,
often include sessions of small group learning, or peer learning. Several commognitive
studies have tended to the issue of group learning, albeit often pointing to their weaknesses,
rather than to their strengths. Sfard and Kieran (2001) showcased a pair of 7" grade students
whose differing mathematical narratives did not lead to a meaningful mathematical
conversation. Ben-Zvi and Sfard (2007) described another pair of 7" grade students whose
mathematical learning did not advance in the group, despite one of the members of the group
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being an expert in the discourse the group was attempting to adopt. A similar story is
recounted by Sfard and Chan (2020). These studies all pointed to the communication between
the members of the group as ineffective and hindering the mathematical activity in the group.

Learning in a group setting includes the communication between group members about
mathematical objects and the communication about the members of the group (Heyd-
Metzuyanim & Sfard, 2012). In mathematics classes students are involved in mathematical
discourse, these include attempting to describe objects’ properties, finding solutions to
equations, or achieving other mathematical goals. This is mathematical activity, or
mathematizing. Yet there is always a concomitant activity going on, which relates to student
identity, affective responses and how students position themselves in the discourse (Heyd-
Metzuyanim & Sfard, 2012). These two activities are intertwined and ineffective
communication can hinder the mathematical communication (Ben-Zvi & Sfard, 2007). Ben-
Zvi and Sfard described a group learning session where the students’ mathematical learning
did not advance, despite one of the members of the group being an expert in the discourse the
group was attempting to adopt, due to communication issues between the pair of students.
Communication will be considered effective or ineffective based on if the responses of a pair
of discursants are consonant with the pair’s expectations (Sfard & Kieran, 2001).

The mathematical communication in group learning occurs in multiple channels of
communication (Sfard & Kieran, 2001). The first channel is the intra-personal channel, which
focuses on a person’s own reasoning and ideas. This occurs when a person communicates
with himself about his ideas, although it could be out loud. The second channel is the
interpersonal channel, where the participants in the discussion are focused on their partner’s
reasoning and ideas. Asking for corroboration for a claim, giving corroboration for a claim,
questioning another’s claim and answering a question asked by another are all in the
interpersonal channel. The interpersonal channel includes reactive utterances, where the
utterance is a reaction to another’s utterance, and proactive utterances, where the utterance is
aimed at getting a reaction from the other participant in the discourse.

Learning is a change in a student’s discourse and can occur through communication in the
various channels of communication (Chan & Sfard, 2020). A learner’s proficiency in any
discourse can possibly advance whenever a student is exposed to narratives from within that
discourse. This exposure can occur in the intra-personal channel of communication, where a
student authors narratives from within a discourse to himself, or in the interpersonal channel
of communication, when another student authors narratives from within the discourse.

2.5 Summary of theoretical background

Through the review of the literature, |1 showed that learner-centered, discussion-rich, active
teaching methods supported student engagement and deep learning in all levels of
mathematical education, and particularly in university level mathematics education.

Many implementations of learner-centered teaching, and specifically, discussion-based
teaching and group learning activities, in tertiary mathematics have supported student
learning, student interest, student confidence, student outcomes and student engagement.
Explorative participation in mathematical discussions can be supported by appropriate tasks
and teacher actions, including moderation that encourages such participation. The studies
describing the implementations of learner-centered teaching in tertiary mathematics
classroom focus on the teaching methods and the outcomes of these implementations, and
less on the student learning processes involved.
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3 Research goals and research questions

There were two main goals of this study. One goal was to adapt instructional practices,
shown to promote discourse-rich explorative participation to a university linear algebra
course to support and encourage student participation and learning. The second goal was to
explore an implementation of the above adaptation to better understand the processes of
learning in an undergraduate classroom in terms of the opportunities for learning that were
picked up in both whole class and small group discussions.

Adapting explorative instructional practices included designing tasks and lesson plans aimed
at promoting discourse-rich explorative participation in tertiary mathematics courses. These
were implemented in discussion-based workshops in linear algebra courses in a science and
engineering university.

The questions asked were:

1) What was the potential of the tasks designed for the workshops to support explorative
participation and encourage student learning? That is:

(a) What are the mathematical objects that can be exposed through the tasks, their
different realizations, and the opportunities for explorative participation that can be
afforded?

(b) How do the tasks afford opportunities for adopting new meta-rules involved in the
discourse of linear algebra?

2) To what extent were opportunities for explorative participation taken up in the whole
classroom discussion and in what ways?

3) What were the learning processes in small groups of the participating students?
Specifically:
a) What were the students’ initial mathematical routines authored to solve the
proffered task? Did they change as a result of the interaction, and if so, how?

b) What were the patterns of communication during the interactions? How did the
patterns of communication afford or constrain the change in students’ routine during
the interaction?

¢) What objects and subdiscourses were involved in the interaction? How did these
afford or constrain the change in students’ routine during the interaction?

20



4 Methodology

This chapter describes the methodology used in this study. The research setting is described
in Section 4.1. Section 4.2 describes the data source, including the framework and content of
the workshops. The analysis of these workshops is depicted in Section 4.3. Section 4.4
comments about my dual role as a researcher and an instructor in the workshops being
studied. An ethical statement is brought in Section 4.5 and the trustworthiness of the analysis
is discussed in Section 4.6.

4.1 Research Setting

This study was conducted at a science and engineering university, where all the students have
successfully passed advanced level high-school mathematics courses required for entrance.
Students take a linear algebra course, a requirement for most science and engineering
students, during their first semester, as it is a prerequisite for many other courses. The data is
from three courses — Algebra 1m Winter 2019, Algebra 1E Spring 2019, and Algebra A
Winter 2020 course. Algebra 1m and Algebra A are taught in Hebrew and Algebra 1E is
taught in English as part of an International Engineering program. More details about the
courses and the students are discussed in Section 4.1.2.

For this study, workshops were offered to the students in linear algebra courses. Linear
algebra is traditionally taught in the university using frontal lecturing methods. The students
have 4-5 weekly hours of lectures and 2-3 hours weekly of tutorial sessions. The lecturer
defines the mathematical notions, shows characteristics, proves theorems, and gives
examples. In the tutorial sessions, the teaching assistant (TA) shows worked examples of
problems utilizing the theoretical knowledge discussed in the lectures. The workshops
assumed that the students had participated in lectures and tutorials, and thus they were
somewhat familiar with all the definitions and theorems presented in those. Homework
assignments in the courses consisted of a computerized parameter-based homework system
for technical problems and handwritten human graded proof questions. The workshops took
into account that some of the students had worked on the homework problems and some of
the students had not. The workshops were offered in addition to the regular lectures and
tutorials and held in parallel to the lectures and tutorials.

4.1.1 Linear algebra workshops

The sessions were one academic hour and participation in the workshops was voluntary. In
the Spring 2019 semester, where there were 30 students registered for the course, 5 extra
points were awarded on the homework grade (which is 10% of the final course grade) to
students participating in at least 80% of the workshops. This was done to encourage
participation, as with such a small number of students registered in the course, there was a
concern that not enough students would choose to come to the workshops. In the other two
semesters, there were over 500 students registered in each course, so no extra encouragement
was deemed necessary to ensure sufficient student attendance for the study.

The number of students participating in each workshop varied based on how many students
were aware that a session was to be held that day, what topic the session was about, prior
commitments of the students and other factors. Thus, the number of students in the
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workshops varied greatly, from 7 students to 60 students. These are displayed in Table 4.1
below. Some of the students were in all or most of the sessions and some students were only
in a single session.

The lesson structure of the workshops was an adaptation of the launch, explore and discuss
(LED) structure and Smith and Stein’s (2011) suggested practices for orchestrating
productive mathematics discussions described in the theoretical background. At the
beginning of each workshop, there was a short (around 5 minutes long) introduction. This
included a summary of definitions and theorems presented in the lectures and tutorials. These
were written on the board and were available to the students throughout the workshop. Next,
the students were given a worksheet with tasks to work on together in small groups of 2 or 3
students. | was the instructor and | walked around answering questions and asking advancing
questions where it was needed. This part took between 15-20 minutes. Finally, the students
presented their solutions to the class and a whole-class discussion was moderated by the
instructor discussing the proffered solutions, connecting the various solutions suggested by
the students, and discussing other related topics brought up by the students’ questions and
examples. This discussion was usually 15-20 minutes long. Detailed lesson plans were
written for the workshops. These lesson plans included lesson goals, mathematical tasks,
multiple possible solutions, possible student difficulties, advancing questions for each
difficulty and questions for further discussion. The lesson plans can be found in Appendix A,
Section 10.1.

As summarized in Table 4.1, 13 workshops were held over 3 semesters about 6 topics from
the course syllabus. The first two workshops, during the Winter 2019 semester, were used to
test the feasibility of this type of workshop and to support the initial design phase of the
project. These two workshops were not recorded but they were described in a research
journal. The initial workshops showed that students were willing to attend more classes, in
addition to the official lectures and tutorial sessions, and raised the expectation that students
in future workshops would participate in the type of discussions planned and would be
interested in learning actively. In addition, these two workshops allowed the moderator to
learn and practice the skills needed for this type of teaching and to receive feedback on the
moderating from teacher educators who had experience with explorative instruction in
secondary schools. The conclusions from these two workshops informed the planning and
implementation of the recorded workshops.

Overall, 13 workshops were held between November 2018 and February 2020. Table 4.1
summarizes all the workshops, their topics, the language spoken in the workshop, the number
of students in the workshop and the timing in which they were held (in terms of week out of a
13-week semester).

4.1.2 Participants in the workshops

There are different levels of linear algebra courses given for the different faculties. In the
Winter 2019 semester the students were from the Algebra 1m course, which is considered the
second level (out of three) of linear algebra taught at this institute. This course serves students
of various engineering faculties, including electrical engineering, mechanical engineering,
bio-medical engineering, and physics. The students participating in the workshops included a
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male and female, Jewish and Arab students, similar to the general student body in the
institute. All the students in the workshops were first semester students.

In the Spring 2019 semester the students were from an International School of Engineering
Mechanical Engineering program. The course was Algebra 1E, which is parallel to Algebra
1m. The students were from North America, South America, Europe and Asia. Most of the
students’ native language was not English. The students had taken introductory math courses
in the first semester and were in their second semester of the program.

The students in the workshops in the Winter 2020 semester were from the Algebra A course.
This course is for students learning towards a degree in mathematics, computer science and
data science. It is considered the highest level linear algebra course at the Institute. The
syllabus includes more proofs, more abstract objects (for example, finite fields) and more
hours of tutorial a week than Algebra 1m. This course is geared towards first semester
students, yet it includes numerous students repeating the course. Thus, there were likely some

students in the workshops for which this was not their first semester.

Course | Workshop | Label | Week of | Topic of Number | Language
No. Semester | Workshop of
(13 total) Students
Algebra 1 Pl 4 Matrices 25 Hebrew
Im
Winter 2 P2 6 Systems of Linear 10 Hebrew
2019 Equations
Algebra 3 S1 2 Complex Numbers 14 English
1E
4 S2 5 Systems of Linear 9 English
Spring Equations
2019
5 S3 8 Linear Dependence 12 English
6 S4 11 Linear 12 English
Transformations
7 S5 15 Diagonalizable 15 English
Matrices
Algebra 8 w1 2 Complex numbers 60 Hebrew
A
9 W2 4 Matrices 15 Hebrew
Winter
2020 10 W3 6 Systems of Linear 10 Hebrew
Equations
11 W4 8 Linear Dependence 24 Hebrew
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12 W5 11 Linear 7 Hebrew
Transformations

13 W6 13 Diagonalizable 25 Hebrew
Matrices

Table 4-1 The Workshops, timing, number of students, topic and language

4.1.3 The tasks that formed the basis for the workshops

The basis for the workshops were the tasks with which the students engaged, and which
formed the basis for the whole class discussion. As reviewed in the theoretical background,
selecting appropriate tasks for supporting explorative participation in learning processes is a
complex project with multiple facets. First, tasks should support student learning by being
challenging so that the students engage with the tasks, but not frustrating so that the students
do not disengage (Tekkumru-Kisa et al., 2020). That is, the level and content of the task must
be suitable. Another critical feature of such tasks is that they should support explorative
participation (Cooper & Lavie, 2021), that is they should afford students opportunities for
saming and objectification of the mathematical objects embedded in them. In addition,
solving tasks should involve opportunities both for object level-learning and for meta-level
learning (Sfard, 2008). Based on these considerations, the tasks were designed and
developed.

The tasks evolved considerably over the two years of the project for several reasons. Some of
the tasks failed to instigate discussions. Additionally, the wording of some of the questions,
intended to encourage discussion, confused some of the students. In some of the workshops,
the initial questions sparked discussions about a different topic than intended. Thus,
modifications and tweaking were necessary and were carefully documented and carried out
using a modified design based research cycle (Prediger & Gravemeijer, 2019), as will now be
described.

| employed a design research approach which utilizes cycles of design and practice. Each
cycle includes holding a session, reflective analysis, and improving the design. The initial
task design was based on personal experience, on input from colleagues and other expert
teachers and from the relevant literature (Denzin & Lincoln, 2011). The reflective analysis
examined two main facets of the tasks - student participation in the discussions and the
mathematical content. The analysis led to modifications of the tasks. For example, the initial
wording of the introduction to the task about linear dependence used in Workshop S3 was:

Are the following statements True or False? If a statement is true, prove it. If a
statement is false, give a numerical counter example.

One of the statements that needed to be proved was:

If {u1, uz, us}< V is linearly independent, us € V, then {us, uz, us, us} is linearly
independent.
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In the first implementation of this task the students gave simple counter examples, such as a
linear dependent set including the zero vector. These examples did not support a meaningful
discussion about linear dependent sets, and to spark such a discussion more “interesting”
examples were introduced into the discussion by the instructor. Answering the above
questions focused the need to compel the students to author these examples and the wording
of the question was changed for Workshop W4 to:

True or False? If a statement is true, prove it. If a statement is always false, give a
numerical counter example. If a statement is sometimes true, give an example when it
holds and when it doesn’t hold.

In Workshop W4, using this modified wording, the students authored more varied examples
including more types of sets that supported the discussion, and there was no need for the
instructor to introduce more examples. The wording of some of the other tasks were also
changed to clarify the task for the students.

The modifications also included adding more questions to some of the tasks. In one of the
workshops, some of the students participating had already worked on similar homework
problems and found solutions immediately, whereas some of the students had not yet
participated in tutorials on the topic and found the tasks frustrating since they were not
familiar with the procedures and theorems of the topic. This led to some of the tasks being
modified to include more questions on different levels to accommodate the wide range of
students who participated in the workshops.

The 7 modified tasks are displayed, analyzed and discussed in detail in the findings section
in Chapter 5.

4.2 Data

This study explored the content, the social interactions, and the communication in the
workshops. The data collected included the tasks and the recordings of the workshops.

4.2.1 Tasks

The design and development of the tasks were described in a previous section. The original
tasks, the modified tasks and the considerations about the tasks were used as the data for the
first research question of this study.

4.2.2 Recordings

The first two workshops of the Spring 2019 semester, Workshops S1 and S3, were held in the
institute’s Center for Promotion of Learning and Teaching recording studio. This center is
equipped with high-quality cameras, audio recording capability and appropriate white board
for clear images of the board. It was designed to produce recorded lectures and tutorials. The
quality of the recordings is very high, however only the board was recorded, and the small
group interactions were not. Moreover, seating in groups was almost impossible in that room
and the whole room was designed purely for frontal lectures. Therefore, I chose to trade
recording quality (of whole class discussions) with appropriate physical settings for

25



explorative instruction and the 9 other workshops were held in classrooms that allowed
seating in groups, or at least in pairs. In these classrooms there was a stage for the instructor
with a large whiteboard, the desks were bolted in place and the chairs were connected to the
desks. To record discussions, four cameras on tripods were used. One camera recorded the
activity at the board and 3 additional cameras were randomly placed in the classroom to
record small group interactions. The whole class discussion was recorded from 11 workshops
and 20 small group interactions were recorded.

4.2.3 Choice of groups to analyze from the small group discussions

The learning processes of students in small groups were examined by using discourse
analysis. This is a highly work-intensive method and therefore, a principled data reduction
process was needed, to choose the small group discussions that would be most illuminating
for answering the research questions. This data reduction process will be described below.

As a first step, all the recordings were viewed and briefly summarized as to the mathematical
content and the group dynamics. The twenty group recordings were labelled based on the
workshop (S = Spring, W = Winter; Sn or Wn, n = number of workshop; Sn-i, i = number of
group). For example, W3-2 signifies the second group recorded in the third workshop of the
winter semester. A table summarizing this is in Appendix B, Section 10.2.

Next, | chose on which groups to focus more deeply. | wanted to examine the mathematical
content of the small group discussions. Therefore, the groups that did not include enough
visible mathematical activity were not further examined. Some of the mathematical activity
was not accessible due to various factors such as unclear speech or students speaking in a
language | do not understand. In some of the groups the students did not interact out loud
very much, and mostly each student solved the task individually. In some of the groups the
students did not justify their claims, either stating, “It’s obvious” or just not explaining their
ideas out loud. In all, in 7 groups there was minimal audible mathematical discussions, thus
they were not further examined.

Even after removing the above data, there were many groups and interactions left to examine.
In order to examine the processes involved in collaborative learning, | searched for groups
with contrasting interactions, as contrasting cases allows for comparison and contrast of the
cases and thus gives a deeper look at each case (Meyer, 2001). One group whose interaction
included equal participation was chosen and one group with unequal participation was
chosen. The table below displays how these groups were chosen.
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20 Groups recorded

Minimal Mathematical
13 Groups Content
7 Groups
. J J
4 N\ N\
Unequal Identities Equal participation
6 Groups 7 Groups
Group S3-2: Group W4-2:
Alice & Ben Hadar & Yaniv

Table 4-2 - Group choice

4.2.3.1 Choosing a group with a seemingly successful collaborative learning

Group W4-2 was chosen as an illustrative example of a collaborative learning process. |
searched for a group with equal participation to examine the processes involved in
collaborative learning. There were 7 episodes that seemingly had interesting mathematical
discussions to analyze, and the participation was mostly egalitarian, therefore the learning
seemingly was collaborative. These 7 episodes were transcribed and examined more fully.
The group W4-2 (groups labelled as described above - workshop W4, group 2) was a mixed
gender pair given the pseudonyms Hadar and Yaniv. They explicitly disagreed at the
beginning of their interaction and their discussion included initial non-canonical statements
and seemingly a collaboratively constructed canonical narrative. They both authored
narratives, they both questioned the other’s narratives and they both seemingly advanced in
some aspects of solving the task. This seemingly productive, joint interaction could shed light
on the processes involved in a successful, collaborative learning episode. Thus, the dyadic
interaction between Hadar and Yaniv was analyzed in depth to examine the processes
involved in collaborative learning within the workshops.

4.2.3.2 Choosing a group with a glaringly unequal communication

Group S3-2 was chosen as an illustrative example of the learning processes involved in a pair
with unequal communicational patterns. This is common in peer-learning (Barron, 2003), and
there were 6 such groups, from among the 20 recorded. In these groups one of the pair acted
as an expert and as a leader, and the other partner acted as a follower. The “expert” partners
told the other student explicitly what to do, and the other member of the pair acquiesced to
this and treated the first student as an expert. The expert member of the pair was considered
the arbitrator of mathematical correctness. The follower either asked, “Right?”” about a
statement or waited for the expert’s permission to continue. In some of these pairs, the expert
also determined non-mathematical behavior. A follower asked, “Should we write it out?” and
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“Do we need to give an example?” asking the expert how to continue. There are also groups
where someone attempted to act like a leader, but the rest of the group did not follow his lead.
In those groups a more equal discussion occurred, and those groups were not considered here.
In the groups where the interaction included an “expert” and a “follower”, the discussion was
less equal. This allowed me to examine the processes of mathematical learning in an unequal
interaction.

In Group S3-2, a mixed gender pair with an unequal interaction, difficulty agreeing on a
proof was observed. This pair, Ben and Alice, was also noted in the teaching journal. The
pair’s final solution was non-canonical, and Alice presented it to the class while stating, “I
don’t agree with this”. This incongruity between Alice’s comments and her actions offered an
opportunity to examine the processes involved when the mathematical activity is hindered by
the social interaction.

4.3 Analysis

4.3.1 Commognitive analysis of the tasks and their potential for supporting explorative
participation
Seven tasks were designed for the workshops to achieve the first research goal of adapting
learner-centered practices to an undergraduate setting. | examined their potential for
supporting explorative participation to answer the first research question (RQ 1) by first
asking what are the objects that can be exposed through the tasks, their different realizations,
and the opportunities for saming that can be afforded. To answer this question, | developed
the Discourse Mapping Tree (DMT). This is an adaptation of Weingarden and colleague’s
(2019) Realization Tree Assessment (RTA) tool, which was based on Sfard’s (2008) notion
of realization trees and explained in the theoretical background. The RTA was used to map
the engagement with mathematical objects in discussion-based lessons by mapping which
realizations were mentioned during a discussion and which links were constructed. In
contrast to the RTA, the DMTs were constructed as a way of examining the potential of a
task, independent from the implementation of the lesson.

4.3.1.1 Constructing the DMTs

The DMT is based on the notion of an object being a “signifier together with its realization
tree” (Sfard, 2008). It is a visual representation of realizations of a mathematical object and
the connections between them. The first step in constructing a DMT is determining the root
node that is appropriate for a certain task, which is not necessarily straightforward. This is
since, first, the object at the center of the task is not always stated clearly in the task. Second,
theoretically, all realizations of an object are equivalent and thus any realization can be the
root node. For convenience, the root node was chosen as the title given to the central object
of the task, as it is given in textbooks (for example: “Complex number” or “Diagonalizable
matrix”).

The mathematical objects determined to as the node of DMTs are families of objects, unlike
the RTA and realization trees which use single objects as the node. For example, the RTA
might use the object f(x) = 2x-4, whereas the DMT uses “linear functions”. This modification
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was necessary as the tasks and discussions in the workshops involved families of
mathematical objects, and not specific mathematical objects.

The next step of constructing a DMT is listing the object’s realizations and grouping together
realizations of similar type. | used the theory and definitions given in textbooks to find
realizations and also examined multiple solutions to find more. Additionally, student
discourse from the workshops, from tutorials, from midterms and exams, from homework
sets and from questions posed over the course of the semester proffered many realizations.
Each type of realization usually belongs to a certain discourse; thus, it has its own keywords,
its own narratives and its own routines of manipulation. Each type of realizations was placed
in a separate branch of the DMT. This process is detailed in the findings section. Below is an
example DMT for the mathematical object “complex number”, which can be realized in the
subdiscourse of algebraic representation (e.g. 3+4i), in the subdiscourse of geometric
representation (i.e. a dot on a plane), in the subdiscourse of the polar, or trigonometric,
representation (e.g. 5cis53.13°), in the subdiscourse of R? (e.g. (3,4)), or in the subdiscourse
as the root of a polynomial (e.g. a root of p(x) = x2-6x+25). Each one of these discourses is
represented by a branch of the DMT shown below.

COMPLEX
NUMBER
Algebraic } [ Geometric } [ Polar } [ R2 ] Rloot of |
\ ‘ l polynomia
3+4i ‘ ) Scis(53.13) (3,4) Root of:
1 x2—6x+25

Figure 4-1 - DMT for "complex number"

Once DMTs are constructed for a designed task, they display the objects that can be exposed
through the task, its different realizations, and the opportunities for saming offered by the
task. The DMTs showed whether solving the tasks included multiple branches.

4.3.1.2  Micro-analysis of tasks to examine if the task necessitated the use of multiple realizations
and multiple subdiscourses
The DMTs showed whether the use of multiple branches was possible to solve the tasks, yet
they did not show if solving the task necessitated this. The extent to which a task demanded
the use of more than one (object-level) branch was analyzed by a micro-analysis of the
mathematics involved in the tasks. First, the possible solutions were discussed and approved
by mathematical experts as possible that the task could be solved using this path, as probable
that a student would suggest such a solution, and as correct mathematically. Each step of
these solutions, or routines, was characterized by within which discourses they were
authored, and which realizations of the object they utilized. This mapped the routine onto the
constructed DMT and displayed if the suggested routine traversed multiple discourses. Next,
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the task was examined if it could be solved based on a single discourse or whether it
necessitated traversing multiple discourses. This was done by studying the application of
familiar routines, taught and rehearsed in the course, to the task at hand.

4.3.2 Examining extent opportunities for meta-level learning were taken up

| used recordings of the whole classroom discussions to answer the second research question
(RQ 2). These were examined to study to what extent the potential of the tasks were taken up
in the implementations in the workshops by mapping which subdiscourses were mentioned,
which connections between subdiscourses were authored and who authored these. For this, |
used the DMTs to construct DDMT (Discussion Discourse Mapping Tree), basing the
procedure for this on what Weingarden and colleagues (2019) used for mapping middle
school classrooms. My goal for mapping the whole class discussions in the workshops was to
examine if there were realizations from within different discourses and if connections
between these discourses were authored.

Mapping a discussion through construction of a DDMT included both a priori and a posteriori
components. The branches of the DDMT for a workshop were drawn a priori using the
branches from the DMT constructed for the object embedded in the task given to the students
in that workshop. The branches available in the DDMT are the subdiscourses available within
which object-level narratives can be authored about this object. This is exemplified for the
discussion in Workshop W1 about complex numbers. The initial DDMT for this workshop
was as below in Figure 4-2.

COMPLEX
NUMBER _

[ Algebraic ] [ Geometric ] [ Polar ] [ R2 ] Root of
l‘ 1 ‘ l polynomial

Figure 4-2 Available discourses for DDMT

The realizations shown on the DDMT were drawn a posteriori based on the realizations
mentioned during the discussion in class. The drawing and classifying of realizations and
links are exemplified on the DDMT constructed for Workshop W1 about complex numbers.
In that DDMT a realization was drawn when a student wrote on the board that (2+3i)? =
(2+31)(2+3i) = 4+12i -9 = -5 +12 i. The narrative authored by the student is within the
algebraic representation subdiscourse, as indicated the keywords, such as 2+3i, and
metarules, such as (a+b)? = a? +2ab +b?, from that discourse. The realization drawn is the
mathematical object that the narrative describes and manipulates, which is (2+3i)? as a
product of two terms. Thus, this realization, (2+3i)? = (2+3i)(2+3i), was drawn on the DDMT
on the branch of the algebraic subdiscourse and is labelled I in Figure 4-3, below. Following
the student’s explanation of what was written on the board, I (the instructor) asked, “How can
we calculate (2+3i)'7?” This narrative is also within the algebraic subdiscourse yet has a
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different object — the complex number which is the outcome of (2+3i)Y’. Therefore, this
realization, labelled IJ in Figure 4-3 below was drawn.

Algebra A Hebrew COMPLEX
Studen NUMBER
______ P .
////"// \\ \\\\\\\
= s : N : . .
Algebraic Geometric Polar R2 Polynomial root
% = ‘ ‘ ' ‘ 5cis(53.13) ‘ ‘ (3.4) ’ Root of:
g L x?—6x+ 25
~~~~~~ 117
IT (243i)A17 = T

Figure 4-3 - DDMT W1 - Complex numbers

Adapting the methodology used by Weingarden and colleagues (2019), originally used on
RTAs, the realizations were shaded in dark gray if a student authored the realization and light
gray if the instructor authored the realization.

In addition to the realizations, | marked whether there was any saming between different
types of realizations and who authored these. Horizontal links between the different branches
of the tree were drawn. A solid line was drawn if a student authored a link between
realizations, and a broken line was drawn if the link was authored by the instructor. For
example, when I asked the class, “How can this complex number (pointing to 1+i on the
board) be represented in its geometric form?” This offered the students the opportunity to
author a realization of 1 + i in a different subdiscourse and to connect it to a realization in the
algebraic representation subdiscourse. The student authored the realization r cis 6 in the polar
subdiscourse. The link authored between these realizations was then marked in the DDMT
(line TIT in Figure 4-3, above). Answering the question, “How can we calculate (2+3i)/?” a
student said, “We can change it to polar representation and then use de Moivre('s formula).”
This narrative connected between a realization in the algebraic and a realization in the polar
subdiscourse (line I'Vin Figure 4-3).

The DDMTSs provided an image of the whole class discussions that allowed me to examine
the characteristics of the discussion and to what extent opportunities for meta-level learning
were taken up. This is detailed in the findings section. The specific realizations that were
mentioned were less crucial for this analysis. The specific realizations indicate object-level
narratives, from within a subdiscourse. The object-level narrative used is an integral part of
the meta-level learning but are not the focus of this analysis. The analysis focused on the



subdiscourses used and the connections between them. The DDMT maps this, while also
displaying which realizations were authored and by whom.

4.3.3 The intertwining of mathematical narratives and communication

The third research question (RQ 3) pertains to examining the learning processes in small
group discussions without the support of an expert. These were analyzed for the
mathematizing and for the communication patterns.

4.3.3.1 Analyzing mathematical discourse

The communication in a mathematical classroom includes mathematical narratives that relate
to the objects, routines and mediators, and narratives that relate to other subjects or to other
people (Heyd-Metzuyanim & Sfard, 2012). The learning process involved in the small group
sessions were first examined through the students’ mathematical routines.

The interaction was analyzed for its mathematical content by examining the mathematical
routines as a task and procedure pair (Lavie et al., 2019). The mathematical routines used by
the pair were delineated, and the task and procedure pairs were determined. The tasks each
student was solving were established from the narratives they offered, and incomplete
statements were filled in, using prior and subsequent statements. This was determined for the
initial, individual routine of each student, when available, and also for pairs’ co-constructed
mathematical routines to examine if and how the interaction modified their mathematical
narratives. For the co-constructed routines, who authored each mathematical statement and
who adopted each statement was determined. This also allowed me to examine how the
students’ mathematical routines were modified. Once the pair’s implementations of the
problem-solving routine were established, they were compared to ascertain if they were
mathematically aligned, that is, if they were consistent to an expert, external observer.

The mathematical narratives were also analyzed to differentiate between object level
narratives and meta level narratives to examine if the learning process was impacted by
whether the communication was around object-level or meta-level rules. These included
implicit mathematical narratives that were not declared verbally by the participants but were
implied by their verbal statements. Additionally, the objectification process of the students
was examined to support the analysis of their mathematical activity. This analysis showed a
detailed depiction of the mathematical activity involved in the pairs’ interactions.

4.3.3.2  Analyzing the communication in a dyadic mathematical discussion

The learning processes in small groups is intertwined with the students’ communication
patterns, so these were next analyzed to allow me to examine the patterns of the students’
communication. The communication was analyzed by studying the channels of
communication used by the students for their mathematical communication. The students’
discourse, as in all dyadic interactions, occurred in two channels simultaneously (Sfard &
Kieran, 2001). The first channel was the personal channel, which focuses on the student’s
own reasoning and ideas. The second channel is the interpersonal channel, where the
participants in the discussion are focused on their partner’s reasoning and ideas.
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To analyze the students’ channels of communication, the transcript of their discussions about
the tasks were first segmented into mathematical narratives. This allowed the examination of
how each pair listened to each other’s mathematical ideas - if they were attending to the
mathematical content of each other’s narratives and how they were actually participating in
the discussion.

The narratives were classified as either occurring in the private channel, the interpersonal
reactive channel or the interpersonal proactive channel. The utterances were classified as in
the personal channel when one of the students communicated with him/herself about his/her
ideas, although it could be out loud. For example, while a student was attempting to figure
out a solution to a task, he stared at the paper or at the ceiling and stated his ideas out loud.
He was communicating to himself about his ideas and the presence of the other student was
ignored. This utterance was marked as having taken place in the personal channel. The
interpersonal channel of communication included students asking for corroboration of a
claim, giving corroboration of a claim, questioning another’s claim and answering a question
asked by another student. The interpersonal channel includes reactive utterances, where the
utterance is a reaction to another’s utterance, and proactive utterances, where the utterance is
aimed at getting a reaction from the other participant in the discourse. These were all marked
in the transcripts of the pairs’ discussions. This classification allowed me to examine how the
patterns of the students’ communication supported or hindered change in their mathematical
routines.

4.4  Trustworthiness

This study used qualitative methods of analysis and the commognitive framework within the
relativist-constructivist paradigm, which maintains that knowledge and learning are a
construct of human social interactions (Denzin & Lincoln, 2011). The trustworthiness of a
qualitative study is gauged by its credibility, dependability, transferability, and confirmability
(Denzin & Lincoln, 2011). In this project we used prolonged engagement with the data,
expert debriefings, and a rich description of the data to establish the trustworthiness of the
findings. The recordings of the discussions were studied extensively and repeatedly. The
findings were discussed with experts in commogpnitive analysis and experts in mathematics.
The data collected was presented in detail.

Some threats to the trustworthiness of the study derive from my studying the learning
processes in workshops that | designed, planned and implemented as the instructor. A
participant in the sessions acting as a researcher is a complex situation that might influence
the subjectivity of the analysis and might compromise the expected role as a participant.
Additionally, the students were aware that the workshops were being recorded, and thus their
behavior might have been artificial. The cameras placed around the room could have
inhibited students from talking freely. This too needs to be addressed.

My dual role as both a participant in the workshops and as an observer to the workshops is
termed a participant observation (Rensaa, 2018). Rensaa suggested that participant
observation reduced interference in the general running of the course and was more natural to
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the students than non-participant observation. Familiarity with the students and the classroom
seemed to lead to the students behaving more naturally. Introducing an external observer into
the classroom would have influenced both the students and me. Digital recording minimizes
the intrusion from classroom observations (Wragg, 2011). Additionally, the observer role was
minimized during the actual workshops, since the video recording freed me from the
necessity of remembering what happened. | was too involved in teaching to take notes during
the workshop.

The possibility of compromising the instructor role is also an issue. The dual role of a
researcher and a teacher can enhance both roles, yet one must be aware that a teacher-
researcher’s first responsibility during class is to be a teacher (Tabach, 2011). During the
sessions | was the instructor, and so focused on that aspect of my dual role. Practically, while
| was teaching, | became involved in the lesson and mostly forgot the research aspect of the
workshop session. However, | did find myself infrequently, subconsciously noting incidents
that would be interesting to analyze. The researcher role protruded into the teacher role only
in a fleeting manner. Immediately after the sessions were over, | recorded an audio journal
entry about the session, and then switched to researcher role. The analysis of the data, which
was done after class while in researcher mode, helped me be a better teacher. Critically
engaging with one’s own teaching practices supports the development of these practices by
making the specific teaching goals more explicit (Jaworski, 1998). | am also more aware of
student difficulties and possible issues that can arise in class due to watching and re-watching
the recorded videos. Both roles - teacher and researcher - are enhanced by the other role.

4.5 Ethical Statement

This project was reviewed and approved by the Behavioral Sciences Research Ethics
Committee of the Technion - Israel Institute of Technology (Certificate No. 2019-063). It had
the approval of the Vice Dean of Undergraduate Studies of the Mathematics Department, the
Head of the Technion International School of Engineering, and the courses’ staff. The students
signed an informed consent form. All names are pseudonyms and confidentiality of the
students was preserved throughout the analysis and the writing.

34



5 Linear Algebra Tasks

In this section the tasks used as the basis for the workshops are examined. The workshops
were designed to support explorative participation through discourse rich instruction. Thus,
the tasks, which are at the heart of the workshops, must have the potential to spark a
meaningful academic discussion and the potential to support explorative student
participation. The potential of a task for explorative participation was operationally defined,
in the theoretcial background, as the existence of the possibility of presenting different
realizations for mathematical objects and the possibility for authoring links between these
realizations. As different realizations and links between them can support meta-level
learning, the tasks were also analyzed for evidence of the meta-level and object-level learning
involved in solving them.

| first present the DMT tool developed and used to explore the mathematical objects that can
be exposed through the tasks, the different realizations of these objects and the opportunities
for saming that can be afforded by these tasks. The DMT tool, discussed in the methods
section in detail, is a visual representation of the realizations of a mathematical object and the
subdiscourses available to the students within which the object can be realized. This allowed
me to examine the potential of the tasks for supporting a meaningful academic discussion
with multiple realizations from within multiple subdiscourses.

Then I present a commaognitive analysis of the discourses involved in solving these tasks to
examine if, and how, these tasks could support meta level learning in a classroom. The links
between the different realizations, displayed in the DMTs, and the transitions between the
different subdiscourses involved in each task are considered to examine the potential for
object-level learning and meta-level learning.

The findings are first exemplified in detail for a specific task, and then described more
generally for the other tasks later in this section. Thus, the findings pertaining to the SLE
(systems of linear equations) task is first presented. The tasks are named by the topic they
were designed to be used for.

5.1 The objects that can be exposed through the SLE task, their different
realizations, and the opportunities for saming

In this section the objects that can be exposed through the tasks, their different realizations,
and the opportunities for saming were examined by constructing and examining a DMT for
the SLE task. First the process of constructing a DMT for a mathematical task is detailed and
then what objects that can be exposed through the tasks, their different realizations, and the
opportunities for saming are described.

5.1.1 Construction of a DMT exemplified on the SLE task
This section describes the process used to construct a DMT for the following task.

Task: Give a system of linear equations whose solution is the set {(x, 2x, 3x) | x e R}.

5.1.1.1 Constructing a DMT Step 1: Determine the root node

The construction of a DMT starts by determining the root node, which is the mathematical
object involved in the task. The task here is to determine what system will have the given set
as its solution. Solving this task includes, mainly, the exploration of the system of linear
equations (SLE) object, thus the mathematical object is the system of equations. The wording
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of the task, “Give an SLE...” also shows that this is the main object embedded in the task.
The SLE object has many realizations, and theoretically, all realizations of an object are
equivalent. Thus, any realization can be the root node. For convenience’s sake, the title given
to the object in textbooks was chosen as the title in the root node. Therefore, the root node of
the DMT for the mathematical object of this task was chosen as “SLE”.

5.1.1.2 Constructing a DMT Step 2: List possible realizations and types
In the next step of constructing the DMT, possible realizations are listed, and general types
found. Below are realizations that can be used in solving the above task and realizing an SLE.

First, an SLE can be realized as a list of linear equations with variables. This realization is
familiar to most secondary school students. For example:

{2x—y=0 or { 2x =y

3x —z=0 S5x =y+ z

The next realization is one to which students are exposed during the beginning of a linear
algebra course, that of an augmented matrix. Specifically, for the SLE considered in this task,

the matrix could look like this: (5 <1 O |0).

An SLE can also be realized by a solution set, in this example {(x, 2x, 3x) | X € R}. These are
the constraints on the solutions to the desired system. This realization does not uniquely
characterize an SLE, as there are infinitely many SLEs with this solution set. However, they
are equivalent in the sense that the Gaussian matrix representing these systems will have the
same row space. This can be realized as a general element of a set: {(x,2x,3x) | x € R}, the
linear span of a finite set: Span{(1,2,3), (4,8,12)}, or the kernel of a linear transformation:
Ker (T(X,y,z) = (y-2x,z-3X)).

An SLE is a mathematical object, and thus can be realized by its properties. For example, the
system consists of 2 equations with 3 variables, it is a homogenous system, and it has a
system rank of 2. This type of realizations also does not uniquely characterize a unique SLE,
but rather are for a family of SLEs. However, they do realize the desired SLE.

There are also properties of the SLE which pertain to the SLE’s solution set which realize the
SLE. These include properties such as the zero vector is a solution of the SLE, the solution of
the SLE has one degree of freedom, and there is a single parameter in the solution set of the
SLE. These realizations also are for a family of SLEs, and not a unique SLE, similar to the
previous type of realizations.

An SLE and its solution set are realizations of the same mathematical object. They both give
conditions on a set of vectors; however, the system of equations is the list of conditions, and
the solution set is the vectors that fulfill those conditions. The difference can also be
described as the solution set is explicitly a set of vectors with constraints, whereas the list of
equations realizes the set of vectors that solve the system, but it is not stated, nor symbolized,
explicitly that it is the set of solutions of the system of equations.

These realizations above were authored by an experienced instructor familiar and
knowledgeable with the mathematical topics and notions involved. There are also realizations
mentioned by students during the workshops. New realizations can keep being authored,
however there is no need to give an exhaustive list of all the possible realizations. Since the
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ultimate goal of this process is determining the types of realizations, that is the subdiscourses
involved or the branches in the tree, the list given needs to be sufficient for this purpose. If
there are additional realizations and additional types of realizations, these can be added to the
DMT. Therefore, the process of listing realizations has an end.

Additionally, I needed to determine which realizations are repetitions. For example, are the
realizations x+y=3 and 2x+2y=6 equivalent, and thus the second one is redundant and should
not be included? Are the realizations x+y=3 and 3=x+y equivalent? The answers to these
questions depend on the audience’s mathematical metarules. The answers would be different
if an elementary student was asked, if a first semester university student was asked or if a
mathematical researcher was asked. The realizations x+y=3 and 3=x+y would be considered
the same using the metarule of commutativity which a mathematical researcher would have
adopted. In contrast, a 6 year old would probably not yet have adopted this metarule. The
DMTs constructed were based on the students participating in this project, namely first
semester students. Thus, mathematical equivalencies like x+y=3 and 3=x+y are considered
repetitive, since commutativity is a metarule usually adopted in pre-university school. In
contrast, since systems of equations are new objects for the students, x+y=3 and 2x+2y=6 are
considered disparate realizations.

5.1.1.3 Constructing a DMT Step 3: Determining the branches of the DMT.
In this step of constructing a DMT, realizations are placed in branches of the tree, each type
of realization in its own branch. Thus, in this step a classification of the types of realizations
is carried out. Each type of realization is a different subdiscourse, as can be seen from the
different keywords, different procedures and narratives that can only be stated within that

2 -1 0 |0
3 0 -1l0
keywords. The procedures include row reduction and determining rank. The narrative Rank
(A) = Rank (A|b) cannot be stated in the subdiscourse of lists of equations. Thus, the
realizations with matrices were all classified as in the subdiscourse of matrices.

subdiscourse. For example, the realization ( ) uses matrices, rows and rank as

Four types of realizations, or subdiscourse, for the mathematical object SLE were
determined. These are lists of equations, matrix representation, properties of the SLE and the
solution space. The solution space can be realized as a set or as a vector space, since the set
of vectors {(x, 2x, 3X) | x € R} is both a subset and a subspace of R*. Therefore, there are five
types of realizations, or five branches in the tree. As described in the theoretical background,
the choice of branches, or subdiscourses, is supported by the historical development of the
representations of SLES.

5.1.1.4 Constructing a DMT Step 4: Drawing the DMT.

This step is drawing the actual tree. The node chosen in Step 1 is the root of the tree. The
branches of the tree are the types of realizations found in Step 3, which are the historical
domains or the subdiscourses involved for the SLE object. The realizations are those listed
during Step 2.

The realizations included in the branch of subspaces are presented to the students much
further on in linear algebra courses and are not available to students first learning about SLEs.
Expert mathematicians and students with prior knowledge would use these realizations, and
students solving this task at a later point in the course would also be familiar with this type of
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realizations. This branch of the DMT is shaded grey to signify that this branch exists, but that
it is not available to the students.

The DMT for the above task, which deals with the mathematical object SLE is shown in Figure

5-1, below.

[ Properties of SLE J

[ Lists of Equations J

[ Matrices

)

I

Set

Subspace

(H2 independent / a b c\ /% % (15) (20)
equations ‘ Ny=2x;z=3x ‘ anld e fllx)={1 {(x,2x,3x)| x € R} Sp{(1,2.3)}
. [ g h i)\x3 m 3 |
(2) 3 variables — . (16) 3 places in
® 23X —Y= 8 :gldﬂl ];:1?":00&& aw;ilerSc;O general element of set Sp g(ZII; 3)
X—z= +2e+3f= +2h+3i= +23),
‘ (3) Homogeneous ‘ ' Fhar g = ’ (4,8,12)}
(9) 3y-22=0 (17) Second element is |
‘ (4) System Rank =2 ‘ 6x-27=0 2 =1 010 double the first; third is (22)
l (12) (3 0 _1|0) triple the first Ker T(x,y,2) =
(5) 0 is a solution (10) 3y-27=0 | | (y-2x,z-3%)
6x-27=0 (18) Subset of all
(6) 1 Degree of 9y-62=0 0 3 -2\ _ 0 the real 3-tuples
freedom 18x-62=0 (13) 8 g _2 z | 8 with a condition

I

‘ (19) 1 Parameters in set

(14) Matrix Rank
Rank(A) = 2

Figure 5-1 - DMT for SLE task

5.1.2 Objects that can be exposed through the SLE task, their different realizations, and the
opportunities for saming
By examining the DMT displayed in Figure 5-1 the objects that can be exposed through the
SLE task, their different realizations, and the opportunities for saming are apparent. The
DMT demonstrates that embedded in the task there were at least four different types of
realizations available to the students, as seen in the major branches stemming from the root
object. That is, realizations in four different discourses are available in this task. This shows
that there were multiple opportunities for students to same the various realizations of the
mathematical objects.

The process of constructing DMTs allowed us to pinpoint the objects exposed by the task and
the number of realizations for these objects that had been learned in the course. This offers a
general view of the richness embedded in each task, that is, that in these tasks there exists the
potential for multiple realizations and for constructing saming links between them. The
multiplicity of these realizations demonstrates the potential of the task to support explorative
participation,

5.1.3 Object-level learning and meta-level learning involved in the SLE task

In the previous section the DMT constructed for the SLE task displayed that the potential for
multiple realizations in multiple discourses exists in this task. This also demonstrates the
opportunity for both object-level learning and meta-level learning.
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The DMT demonstrates the opportunity for object level learning, that is the opportunity for
adopting new object level narratives in an endogenous development. The students are
afforded the opportunity to author narratives within each of the subdiscourses displayed on
the DMT. These can include authoring a realization within a subdiscourse or saming between
two realizations within the same subdiscourse. For example, saming two mathematically
equivalent lists of equations. The saming is within a single discourse and thus does not
involve meta-level learning. This type of learning is also important for students, yet is more
readily available in most standard tasks, and thus is not the focus of these tasks.

The DMT also demonstrated that the SLE task has opportunities for meta-level learning of
adopting object related metarules in horizontal exogenous development. This includes the
authoring of narratives in the coalesced discourse connecting between two subdiscourses. The
DMT shows that the opportunity for unifying the different subdiscourses for each
mathematical object in this task are available. The potential for constructing links between
the branches of the DMT signals the potential for meta-level learning. For example, the
narrative the rank of the matrix is 2, so the system of equations has 2 linearly independent
equations. This narrative connects between a realization in the matrix subdiscourse (the rank
of the matrix is 2) and a realization in the list of equations subdiscourse (has 2 linearly
independent equations). Thus, this is a narrative in the coalesced discourse of SLEs and
authoring this is meta-level learning.

The DMT displays the availability of multiple realizations in different discourses and thus
shows that the SLE task affords opportunities for saming different realizations in different
subdiscourses. Thus, the task has the potential to encourage and support objectification of the
mathematical object SLE. However, the DMTs do not allow us to see the extent to which the
task demanded the use of more than one (object-level) branch, only that the potential exists.
For this, a more micro-level analysis of possible routines for solving the tasks is necessary.

5.2 A commognitive analysis of the SLE task

A commognitive micro-analysis of the discourses involved in solutions of this task were
carried out. The solutions to the tasks were examined to determine if they could be obtained
by following familiar routines from one discourse, or whether the solution necessitated
following routines from different discourses.

First a possible solution was described to analyze the mathematical narratives necessary for a
solution to the task. There are many possible solutions, this one was determined to include
the necessary narratives of any solution by mathematical experts. This is explained in detail
later. Next, the discourses involved in this solution were examined. Finally, the transitions
between the discourses were considered. This is discussed in the following sections.

5.2.1 Possible solution for the SLE task
Following is one possible solution (out of many) for the SLE task.

Task: Give an SLE whose solution is the set {(X, 2x, 3x) | x e R}

The solution is presented below. The realizations used in the narratives are numbered to
correspond to the node in the DMT of the task, in Figure 5-2 below the solution.
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Solution:

(@) There are 3 places in the general element of the given set (16) that solves the SLE so there
are 3 variables in the expected SLE (2).

(b) The general element of the set that would solve the expected SLE can be expressed using a
single parameter (19), which is equivalent to stating that there is one degree of freedom in the
expected SLE (6).

(c) The degrees of freedom of an SLE (6) is the number of variables (2) less the rank of the
representative matrix (14), thus the rank of the system is 2 (4). That is, there are two
independent equations in the expected SLE (1).

(d) The elements of the set that solves the SLE are the 3-tuples whose second element is
double the first element and the third element is triple the first element (17), thus the
conditions on the set can be expressed asy =2x & z=3x & x, y, z € R (hybrid between 7 &
18)oras2x—-y=0&3x-z=0&x,y, z € R (hybrid between 8 & 18).

(e) The solution to the task is the SLE which is {gi :321 - 8 (8) or (g _01 _01|8) (12).

In the figure below, Figure 5-2, the realizations mentioned in this solution are shaded grey.
The branch of subspaces is faded out, as it was not available to the students at this point in the
course. This demonstrates that the realizations included in this solution are from multiple
discourses, as there are shaded boxes in each branch of the DMT.

SLE |

[ Matrices ]

[ Properties of SLE J [ Lists of Equations J

[
(1) 2 independent
equations

(2) 3 variables

‘ (3) Homogeneous ‘

\

‘ (4) System Rank =2 ‘

(5) 0 is a solution

‘ (6) 1 Degree of freedom ‘

/

| (Ny=2x;z=3x |

a b c\/x k
an|d e f <x2>=(l>
g h X3 m

i
With k=/=m=0 & a+2b+3c=0

15)

{(x,2x,3x)| x e R}
AN

(16) 3 places in

{5 gt general element of set
3x-2=0 & d+2e+3f=0 & g+2h+3i=0 I
l
(9) 3y-2z=0 (17) Second element is
6x-27=0 2 =1 o0]o0 double the first; third is
\ (12) (3 0 _1|0) triple the first
(10) 3y-2z=0 | |
6x-2z=0 (18) Subset of all
9y-6z=0 (13) <g (3; _§> (;) _<g> the real 3-tuples
-62= - - with a condition
18x-62=0 0 9 —6/\z 0
l ‘ (19) 1 Parameters in set
(14) Matrix Rank
Rank(A)=2

Figure 5-2 — DMT SLE possible solution

Although there are many possible different solutions to this task, there are certain narratives
that must be included in any solution. First, the number of variables in the system must be
determined. Although the narrative there are n variables in the system may be implied, and
not stated out loud, it will be included in any solution when the suggested system is written
out using n variables. Any solution must include writing down a realization of an SLE, and
thus the number of variables or the number of columns in a matrix must be determined.
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Similarly, the narrative there are at least m equations in the desired system must also be
included. Any solution must determine how many equations to write down, and this must be
determined somehow. Any solution written down will also include determining if the system
if homogeneous or not (Ax = b is homogeneous if b=0). As with the other narratives, this
might not be explicit but implied by the final solution. The solution described above includes
these narratives and can be considered typical of any solution for the task in that respect.

| now present an alternative solution and show that these narratives are present. This solution
is based on student unsuccessful attempts at a solution.

Additional Solution:

a) The equations in the requested SLE are of the form ax+by+cz=d.
b) The system is homogeneous, thus d = 0.
c) Plugging in the given solution, (x,2x,3x) yields:

ax + b(2x) +c(3x)=0

d) Thus, a+2b+3c =0

e) Choose various a,b,c € R such that this holds.
z

x—==0
3

f) y_23_2=0issuchanSLE

—3x+z =0
This solution includes the narrative there are n variables in the system in step (a). The
determination of the structure of the desired equation includes the number of variables. Step
(b) is the narrative the system is homogeneous. In step (e) of the solution the narrative there
are at least m equations in the desired system is implied in the choice of how many different
values to determine for a,b and c.

The original solution presented earlier, the solution presented here, and any other solution of
this task includes some mandatory narratives. Therefore, the solution suggested above, which
includes these aspects of any solution, was analyzed in detail to explore this task.

5.2.2 The discourses involved in solving the SLE task

The above solution was just one of many possible ways to solve the task. Nevertheless,
examining more closely how it transitions between discourses demonstrates that this task
encourages such transitions. To do so, the objects involved in each step of the solution were
examined to determine which discourses are involved in solving this task.

There are two main mathematical objects of this task — a list of equations and the set
{(x,2x,3x) | x € R}. The major meta-level task of this question is the saming between the
discourse of SLEs and the discourse of sets. The objects from these, and other, discourses
involved in the solution presented above are examined.

In the possible solution given in the previous section, the statements are labelled by letters,
(1). In the first statement (a) “the number of places in the general element of a set”, an object
from the Set discourse, is stated to be equivalent to “the number of variables in the SLE”, an
object from the SLE discourse. The second statement (b) equates “the number of
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parameters”, an object from the Sets discourse, with “the degrees of freedom”, an object from
the SLE discourse. Statement (c) contains objects from the SLE discourse — “degrees of
freedom”, “number of variables” and “number of independent equations” — and links to an
object from the Matrix discourse — “rank(A)”. These statements present objects from the

discourses of Sets, SLEs and Matrices and states saming links between the various objects.

Statement (d) entails hybrid mathematical objects, that is objects that are constructed from
two discourses. The conditions on the set are presented in the Sets discourse as “the second
element is double the first element and the third element is triple the first element”. These are
then presented written algebraically as a list of equations, “y =2x & z=3x & X, y, z€ R”.
The conditions on the set as a list of equations uses the Sets discourse and the List of
Equations discourse. The final statement (e) recognizes these algebraic conditions from the
List of Equations discourse as the SLE the task searched for.

This solution used four different types of discourse — Properties, Matrices, Lists of Equations
and Sets. These are the different branches displayed in the DMT above.

The number of equations and variables in the expected system must be determined as part of
the solution, and this includes narratives in the “properties of SLE” discourse. Degrees of
freedom is a nascent vector space term that symbolizes the rank of a vector space, without
any formal definitions. This hybrid construct is a scaffold used when SLEs are presented in
the course before vector spaces. This order of topics allows SLES to be used as an illustrative
example of a vector space and supports intuitive understanding of the vector spaces. The SLE
discourse is new to the students and is introduced and exemplified in the lectures and
tutorials.

The Matrix discourse is used to discuss representative matrices of coefficients of SLESs, such
as used in the Gaussian method of solving an SLE. This discourse includes matrices,
augmented matrices, row reduction and echelon form. These objects are part of the topics
introduced to the students in the course before SLEs are introduced. The efficiency of the
matrix realization and the integral part it plays in the process of finding a solution to a system
supports the students’ adoption of it almost immediately and. exclusively once they are
introduced to it. Thus, a matrix representation of an SLE can be considered an acceptable
solution to the task. The matrix discourse is also necessary to determine if a suggested SLE is
a solution to the task, by using matrix representation and the Gaussian method to solve the
suggested system. The phrasing of the task necessitates the Sets discourse, and the final
answer to the task is from the List of Equations discourse.

Examining this solution displayed that four different subdiscourses— Properties, Matrices,
Lists of Equations and Sets — are involved in solving this task.

5.2.3 Transitions between discourses included in the solution

The presented solution included four different subdiscourses, as shown above. In this section
the transitions between these discourses are examined. These transitions between discourses
support the saming of realizations between the different discourses.

The task, as phrased, includes transitions between discourses. The beginning of the task,
“Give an SLE whose solution is...”, belongs to the List of Equations discourse involving
“equations” and “solutions” of these equations. If a student employed the familiar routines of
solving sets of equations, from high school or Gaussian elimination, they would reach an
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impasse, since those routines are appropriate for finding a solution of a given system.
However, in this task a student must first construct a system. The last part of the task, namely
“the solution is the set {(x, 2X, 3X) | X € R}”, belongs to the Sets discourse. As the expected
answer is a list of equations or a matrix representation, the Sets discourse is also not
sufficient. Thus, any solution necessitates tapping multiple discourses and linking between
them.

The task states that the solution is “the set {(X, 2X, 3X) | X € R}”, from within the Sets
discourse. Thus, solving this task begins in the Sets discourse. Possible routines available to
students in this discourse could be phrased as answers to sub-tasks such as “what can we say
about this set?”, or “how would we characterize the elements of this set?”” The narratives
resulting from these sub-tasks would include, “For every real value x the 3-tuple (x,2x,3x) is
in the set” or “The set is a subset of all the 3-tuples that can be expressed using a single
parameter”. However, after authoring these narratives the students are liable to again reach a
“dead-end”. There are no available routines within the discourse of sets to continue with
these narratives, especially not any that would lead them to saying anything about “an SLE”
of which this set is “a solution”. Thus, this task cannot be solved within the discourse of Sets.

One very familiar routine for obtaining a “solution” for an SLE is that of Gaussian
elimination within the matrix discourse which entails representing a system as a matrix,
reducing it to echelon form and utilizing the row-equivalent system to determine the solution
space. This is the main, standard routine used in solving SLEs, thus the students would turn
to this routine. However, in this task no system is given. There is nothing to “reduce”. The
students must construct their own system (where the solution is given) and the familiar
routines for finding solutions are not helpful for that. This task cannot be solved using
exclusively familiar routines from within the matrix discourse.

Another routine for solving the task would be to suggest random SLEs and examine the
solution space of these, in an attempt to discover an appropriate SLE. This trial-and-error
process, with no operational method of choosing equations from among infinite possibilities
is not practical and leads to frustration at the enormity of the task. Thus, the familiar routines
in the discourse of SLEs and Matrices are not sufficient and again lead to “dead-ends”.

When students reach an impasse, and cannot continue, they can be guided to search in other
discourses for a possible routine. Thus, the routines of “what can we say about this set” can
be shifted to the discourse of SLEs, which includes the term “degrees of freedom”. The new
task can be “what can we say about this set in the SLE discourse” and can result in the
narrative, “there is one degree of freedom in the set”. This narrative can prompt a familiar
routine in the discourse of SLEs/Matrices, which uses the endorsed narrative in this
discourse: degrees of freedom is equal to the number of variables less the rank of the system.
Thus, the transition between the discourse of Sets to the SLE discourse can be encouraged.

Similarly, the narrative “the conditions on the set can be expressed asy =2x & z=3x & X, Y,
z € R” which 1s within a hybrid of the discourse of Lists of Equations and the discourse of
Sets brings the student to an impasse within the discourse. Completing the task by
recognizing this as the SLE necessitates transitioning out of the discourse of Sets, and saming
this set with an SLE.
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Solving this task includes the narrative the SLE has three variables since the general element
of the given set of solutions has three places. The first part of this narrative, three variables,
is from within the discourse on properties of SLEs and is marked (2) in Figure 5-2. The
second part, the general element of the given set of solutions has three places, is from within
the discourse on sets and is marked as (16) in Figure 5-2. The narrative traverses two
discourse and cannot be stated in either of the discourses singly. This narrative can only be
stated in the new coalesced discourse of both the discourse of Sets and SLESs together.

This is displayed in Table 5-1, below. This table shows a possible subroutine for solving the
task together with an analysis of the discourses traversed in each sub-routine. The narrative
described above is labeled (a) and is the first row of the table. The nodes on the DMT (Figure

5-2) that represent each realization are marked in parentheses.

Routine sub-step

Discourse traversed

a) There are 3 places in the general element of the given set
(16) that solves the SLE so there are 3 variables in the expected
SLE (2).

Sets (general element) —
Properties of SLE (3
variables)

(b) The general element of the set that would solve the expected
SLE can be expressed using a single parameter (19), which is
equivalent to stating that there is one degree of freedom in the
expected SLE (6).

Sets (general element) —
Properties of SLE (degree
of freedom)

(c) The degrees of freedom of an SLE (6) is the number of
variables (2) less the rank of the representative matrix (14), thus
the rank of the system is 2 (4). That is, there are two
independent equations in the expected SLE (1).

Properties of SLE (degree
of freedom, number of
variables) — Matrix
discourse (rank of matrix)
— SLE (two independent
equations)

(d) The elements of the set that solves the SLE are the 3-tuples
whose second element is double the first element and the third
element is triple the first element (17), thus the conditions on
the set can be expressed asy=2x & z=3x & X, y,z€ R
(hybrid between 7 & 18) oras 2x —-y=0& 3x-z=0&X,Y, zZ
€ R (hybrid between 8 & 18).

Sets (elements of the set,
3-tuples, etc.) — System of
equations (e.g. y=2x)

2x—y=0(8)

(e) The solution to the task is the SLE which is {Sx — =0

or (g _01 —01|8) (12).

Systems of equations,
matrices, SLEs.

Table 5-1 - Discourses traversed

As can be seen in Table 5-1, this routine tapped four different discourses — Properties of
SLEs, Matrices, List of Equations and Sets and included transitions between them. The
transitions in the above solution are necessitated by students following familiar object-level
routines within a discourse and reaching an impasse, or a dead-end, when the object level
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routine does not continue. Thus, the task necessitates implementing meta-level routines of
linking to routines and narratives in another discourse.

5.2.4 Summary of the commognitive analysis of the SLE task

In this section, a possible solution to the SLE task was presented, and the objects, routines
and discourses involved in this solution were closely examined. Solutions for this task
include realizations and narratives from multiple subdiscourses, transitions between these
discourses and impasses when attempting to solve the task within a single discourse. Thus,
this task afforded opportunities for practicing meta-rules involved in linear algebra by
supporting and necessitating cross discourse narratives.

Importantly, the assumption underlying this task is that students have already been
introduced to the various subsumed discourses underlying the SLE (full linear algebra)
discourse, as well as to the equivalence (sameness) of the various realizations. Thus, this task
is not supposed to introduce students to new meta-rules but rather to support them in enacting
and rehearsing the saming actions that are critical for the objectification of SLEs. Still, given
the difficulty of meta-level learning (Sfard, 2007Db), it is conceivable that the instructor would
have an important role in supporting students’ struggle with such tasks. Thus, when students
reach an impasse, the instructor should guide them to search in other discourses for a possible
routine.

5.3 The objects that can be exposed through other tasks - their different
realizations, and the opportunities for saming

In the previous two sections the findings for a single task were presented in detail. Tasks
about other topics were designed for the workshops and these were examined. In this section
the DMTs for these tasks are presented.

Similar to the detailed process described above for the construction of the DMT for the SLE
task, DMTs were constructed for 6 other linear algebra tasks. This process included
determining the root node, listing realizations, and determining the different subdiscourses
available for each mathematical object to be used as branches of the DMT. In the following
sections these are presented along with the DMT constructed.

In each section first the task is given. Then the choice of root node, that is the mathematical
object for which the DMT was constructed, is briefly explained. The subdiscourses within
which the object can be realized are discussed and exemplified. Finally, the DMT constructed
using these is displayed. The section headings are the names given to the tasks. These names
are based on the label of the topic as used in standard linear algebra textbooks and syllabi.

5.3.1 Complex Numbers Task

Task Let z, z, € C such that z , z, # 0.

1) Let z; - z, € R. Which of the following statements is always true? Which statement is
never true? Which statement holds for specific cases of z, z, €C?
a) z,= z
b) z,=a-z,(0eR)

C) zf-z5=1
d) Im(z)=0
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2) Give a statement for which the following is true: j—l € R & (statement)
2

Node The mathematical object used as the node in this DMT is the complex number, as a
general element of C.

Discourses A complex number can be realized in the algebraic discourse, for example 3+4i.
This discourse includes narratives about the real part of a complex number (Re(3+4i)=3), the
imaginary part of the complex number (Im(z) = 4) and the modulus of a complex number
(|3+4i| =v'32 + 42). This discourse includes algebraic manipulation of real numbers.

A complex number can also be realized within the geometric discourse, where the complex
numbers are realized as a dot on a 2-dimensional axis or on a plane. This discourse includes
narratives about distance from the origin, geometric characteristics of right-angled triangles
and quadrants of the plane.

The polar coordinate system discourse, also known as the trigonometric representation, can
also be used to realize complex numbers. In this discourse the complex number can be
represented using degree as 5(cos 53.13 + i sin 53.13) = 5cis (53.13) or using radians as 5cis
(g). The narratives in this discourse include trigonometric functions and trigonometric

identities.

There is also the real plane discourse, where complex numbers can be realized as a 2-tuple
such as (3,4). This discourse includes narratives within R2,

Finally, complex numbers can be realized as roots of a polynomial. In this discourse there are
narratives pertaining to polynomials, such as the first fundamental theorem of algebra which
states that any polynomial of degree n has n complex roots (including multiplicities), and
narratives about finding the roots of polynomials, such as if z is a root of a polynomial with
real coefficients, then z is also a root.

The complex number object can be realized in five subdiscourses — algebraic, geometric,
polar, planar, and polynomial. These are the branches of the DMT, shown below.

DMT

COMPLEX
NUMBER
[ Algerraic ] [ Geometric } [ Polar ] [ HT ] poRl\cl):(t)s;al
3+4i ‘ ' 5cis(53.13) (3,4) Root of:
, x> —6x+25

Figure 5-3 DMT Complex numbers
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5.3.2 Matrices Task

Task Let C be a matrix whose third column is all zero's. Let D be a matrix whose second row
is all zeros. Examine CD and DC. Do they inherit any characteristics from C and D? That is,
is the third column all zeros? Is the second row all zeros?

Node This task discusses properties of the structure of matrices, such as a certain row being
all zero, and multiplying matrices. Solving the task involves focusing on a matrix with a
certain property and authoring narratives pertaining to it. A different matrix with another
property would have the same branches, but the realizations would be different. The
properties depend on which field is used to construct the matrices, but the properties of the
field are not the focus of this task. Thus, the mathematical object was considered as a general
matrix over a general field F.

Discourses Matrices can be realized visually as a block, where the objects being manipulated

1 0 0
are a two-dimensional array, such as (0 1 0). This is a discourse including narratives
0 0 1

1 0 0 1 00
manipulating the arrays as a single object, forexample |0 1 0|+ (0 1 0] =
0 0 1 0 0 1

2 0 0

(0 2 0). This discourse also includes describing properties of the array, such as the
0 0 2

matrix is symmetric (graphically, i.e. invariant under reflection with respect to the main

diagonal) or the matrix is square. Matrices, and their properties, can be realized in this
discourse using “hand motions”. For example, a drawing with lines in large parenthesis
realizes a matrix, even though no specific elements are apparent, as in the following image.

(=)

Each matrix can also be realized as an array of scalars, where each element in the matrix is a
scalar and treated as its own object. This discourse includes narratives from within the field
of scalars, such as the element in the third row and second column is zero (as>=0) or for all i
and j it holds that Aij=Aji. This subdiscourse includes familiar narratives about scalars, as the

fields are familiar to the students, however realizing a matrix as an array of scalars is not
simple.

A matrix is also an array of n-tuples, that is each row in a mxn matrix is an n-tuple and each
column is an m-tuple. This discourse includes narratives such as row k is equal to column k
and the row space of the matrix is equal to F".

Once matrices are mathematical objects they can be realized symbolically and by their
properties as elements of the set of all matrices. For example, A commutes multiplicatively on
the left or multiplying by A on the right does not alter any matrix. The symbol A realizes the
matrix, as in the narrative A'=A. This discourse realizes matrices by describing properties of
them, rather than the internal structure.

Matrices can be realized in four subdiscourses — visually, arrays of scalars, arrays of tuples,
and symbolically. These are the branches of the DMT, shown below.
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DMT

MATRIX
[ Visual J [ Array of scalars ] [ Array of tuples J [ Symbolic ]
' [ 1 [

1 2 8 i Column 3 is Rank(A)=n

i A DGy = Z Dok Cyj all zero I

b b § ‘ ren

J mxn

* e ) UL m rows n columns =i
DCB = Z Dik Ck3 [ I
g i @ k=1 Multiplying by A on left

l

Row space

I Row k is equal conserves
property
( ) to column k
[

Matrix is square

Figure 5-4 DMT Matrix

5.3.3 Vector Space Task

Task What is the greatest value of n, such that there exist subspaces W; € R?*3) 1 <j <n,

Node This task explores subspaces and the relationships between different subspaces of a
given, real vector space. The scalars being real numbers does not affect the solution, therefore
the object is not the real subspaces, but a general vector space.

Discourses A vector space can be realized as a set of elements. This discourse includes
narratives such as (0,0,0) is in W2 and W1 is a subset of W>. In this discourse the elements are
realized as n-tuples, that is a sequence of numbers separated by commas. The unique
properties of vector spaces are not part of the narratives. Although these sets can be infinite
(when the field is of characteristic zero), the narrative x is an element of W is within this
discourse.

Another way in which vector spaces can be realized is as a set of vectors, where the
relationship between the elements is noted. This discourse includes narratives such as all the
multiples of (1,0,0) are in the vector space. Vector spaces can be realized in this discourse as
linear spans, which include narratives such as the basis of the vector space is (1,0,0) or
manipulation of the basis instead of the entire vector space.

Finally, as vector spaces are mathematical objects, they can be realized by their properties.
This discourse includes narratives such as the dimension of the vector space is 2 and the
vector space is a subspace of a different vector space.

The object vector space can be realized in three subdiscourses — sets of elements, sets of
vectors, and by its properties. These are the branches of the DMT, shown below.
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DMT

VECTOR SPACE

[ Set of n-tuples J [ Sets of Vectors J [ Properties ]

Set of 3-tuples whose {(xy0[xeR} Dim W =2
third element is 0 ‘ ‘

W is a subspace of
Sp{(170>0)’ (0’1>O)} V

{(0,0,0), (1,1,0), (1,2,0), [
(-1,1,0), (2,0,0),...}

Sp{(1,0,0), (0,1,0), (2,3,0)}

Figure 5-5 Vector Space DMT

5.3.4 Linear Dependence Task
Task V is a vector space over the field F. If a statement is true, prove it. If a statement is false,
give a numerical counter example.

(1) Given the set {u;, uz, us} is linearly independent and u4 € V, then the set {uy, ...,

u4} 1s linearly independent.

(2) Given the set {u;, uz, us} is linearly dependent and u4 € V, then the set {u, ..., us}

is linearly dependent.

(3) If {uy,...,us} is a linearly dependent set, then Sp{uy,...,us} = Sp {uz,...,us}.

(4) If {uy,...,us} is a linearly independent set, then Sp{uy,...,us} =Sp {u,...,us}.
Node This task includes sets of vectors that are linearly dependent and linearly independent.
Solving this task includes authoring narratives about these sets. There is no specific set, rather
it is a general set. The number of elements in the set is not central to the solution, rather the

relation between the dimension of the vector space and the size of the set is important.

The notion of linearly independent vectors is logically equivalent to the notion of not linearly
dependent vectors. These two objects are two faces of the same object and the DMT
constructed for them is similar and use negations of the same narratives within the
realizations. Therefore, either can be chosen as nodes and | used linearly independent vectors.

Discourses A linearly dependent set can be realized as a collection of n-tuples for whom
there exists a linear combination equaling zero, that is as a collection of vectors. This
discourse includes narratives about scalars and linear combinations, such as there exist
scalars «, 3, y, not all zero, suchthata - v; +B-v, +y-v; = 0.

A linearly dependent set can be realized as a set of n-tuples with properties. This discourse
can include narratives such as the vectors in the set are multiples of each other and zero is an
element of the set.
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Linearly dependent sets can also be realized by their representations as coordinate vectors in
F". This discourse includes reduced echelon matrix representation of these vectors as

1 0 O
0 1 O) does not have a row of zeros.

The discourse about vector spaces can also be used to realize a linearly dependent set. For
example, the narrative (1,2,3) is not an element of the linear span of (1,0,0) and four vectors
cannot be linearly independent in R® are within this discourse.

narratives. For example, the row reduced matrix (

The mathematical object a linearly independent set can be realized in four subdiscourses —
scalars, sets of n-tuples, matrices and vectors. These are the branches of the DMT, shown
below.

DMT
SET OF LINEARLY
INDEPENDENT VECTORS
7 / N
Vectors Set } Matrices Vector space
\
— |
Ifoa-v+B-vy+y-v;=0 {(1,0,0,0), (0,1,0,0), Row reduction to (1,2,3) is not in
Thena=B=7=0 (0,0,1,0)} echelon form results Sp(1,0,0)
l in NO Zero rows \
| {(1 0), (0 1)’ ‘ Four vectors cannot be
If one of @, B,y is not zero 0 8 00 0 1.0 0 0 linearly independent in R3
Then R (1 O)} (0 1 0 0)
a-v+ B-v,+y-v3#0 \ 0 010
\
There is no scalar o 0 is in the set

such thatv, =a - v,

Figure 5-6 Linearly Independent Vectors DMT

5.3.5 Linear Transformation Tasks

The task used for the workshop implemented in the Algebra 1m course was considerably
modified for the next iteration of the workshops in the Algebra A course, which included a
lot more theory and finite fields. Thus, both tasks are presented.

Task (Algebra 1m) T: R® — R? is a linear transformation such that T(1,2,3) = (0,0,0) and T is
not the zero transformation.

For which values of n € N does there exist such a T so that dim Ker T =n?
For those values of n give an example of such a T and find a basis of Ker T.
Task (Algebra A) T: Z2 — Za is a linear transformation such that T(1,2,3,4) = (0,0,0,0).

1) For which values of n € N does there exist such a T so that dim Ker T =n?
For those values of n give an example of such a T and find a basis of Ker T.
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2) If, in addition, there exist 3 vectors vi, V2, v3 such that T(v1) = T(v2) = T(vs), which
values can dim Ker T take?
3) Construct a T that fulfills the given conditions and also Ker T =Im T.
4) Construct a T that fulfills the given conditions and also Ker T n Im T =
sp{(1,2,3,4)}.
Node These tasks include defining a linear transformation that has certain properties. Solving
these tasks includes realizing the mathematical object of a linear transformation, thus this is
the root node of the DMT.

Discourses A linear transformation is an expansion of a function, thus it can be realized in
the discourse of functions. This includes narratives about the image of vectors, such as
T(1,2,3) = (3,3,3), the image of a vector (x,y,z) is (x+y,x+y,x+y) and the linear
transformation is injective.

A linear transformation can be realized using vector spaces. A linear transformation can be
realized by its definition on any basis. The discourse of basis of vector spaces includes
narratives such as the linear transformation is uniquely determined by defining it on a basis.
Linear transformations can also be realized by the subspaces associated with them — the
kernel and the image. Within this discourse the narrative the image of T is the linear span of
the vector (1,1,1) can be stated.

A linear transformation can also be realized by its matrix representation according to a basis.
The discourse of matrices includes narratives such as the linear transformation is invertible

since the matrix is invertible and the image of the linear transformation is the column space

of the matrix.

Linear transformations can also be realized as elements of a vector space, namely
Hom(V,W). This extremely abstract notion was not included in all the algebra courses, and
thus was not available to the students in all the workshops. It is not displayed on the DMT.

Thus, in this course the mathematical object linear transformation can be realized in three
subdiscourses — functions, vector spaces, and matrices. These are the branches of the DMT,
shown below.
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Figure 5-7 DMT Linear transformations
5.3.6 Diagonalizable Matrix Task

a, a, --- an,
B nxn a, Qa, - an

Task Let A be an n x n complex matrix, A € C"*". A= | . S .
a,; a, ... au

For what conditions on as, @, ... an is A not diagonalizable?

Node This task discusses the mathematical object of a diagonalizable matrix. Yet, solving
this task contains narratives about the mathematical objects eigenvalues and eigenvectors.
These two topics are often presented to students together, as they are intertwined. The
solution of this task demands a conclusion about a matrix and uses narratives about
eigenvalues to justify these. Thus, the root of the DMT is the diagonalizable matrix, and the
mathematical object of eigenvalue is a subtree of the main object.

In all trees there are potential subtrees. For example, the DMT for a complex number
includes the mathematical object of a real number, which can be mapped by an DMT. The
real number’s DMT can, in turn, include a subtree mapping a rational number. This process
will continue, expanding and lengthening the DMT to an unwieldy entity. Thus, the
underlying assumption included in constructing DMTSs is that although every object has a
subtree, if it is an object that the learners are familiar with, no subtree is mapped for such an
object. Therefore, the endpoints of DMTSs are objects that can be considered as a prerequisite
(familiar objects and discourse) for learning the new object. The DMT for diagonalizable
matrices includes the subtree of matrices described above but is considered as a familiar
discourse and is not mapped here.

Similarly, based on this assumption, eigenvalues should be considered as familiar, old objects
within the diagonalizable matrix DMT. Yet, this is not the case. In the courses studied for this
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project, the two objects were taught together during the last week of the semester. Due to
time constraints, the students were not able to first objectify eigenvalues and then examine
diagonalizable matrices. Rather, it was all together. Thus, eigenvalues and eigenvectors were
not familiar objects to the students and are mapped as a subtree within the main DMT.

Discourses Diagonalizable matrices can be realized as elements of the vector space F™". This
discourse includes narratives such as the matrix is similar to a diagonal matrix and

1 00
(0 2 0) is a diagonal matrix. This discourse includes realizing matrices as matrix

0 0 3
representation of linear transformations.

The discourse of the vector space F" can also be used to realize a diagonalizable matrix. For
example, the narrative the eigenvectors are a basis for the vector space F" is within this
discourse. This discourse includes the object of eigenvectors. The discourses for this object
are the same as for any vectors and are discussed in the task pertaining to vector spaces.

Diagonalizable matrices can also be realized as an array of numbers and by their scalar
properties. For example, in this discourse the narrative the eigenvalues are all different can be
stated and the trace of the matrix is real is also a narrative within this discourse. This
discourse includes the subtree of eigenvalues, which is a scalar object that is central to
solving this task, as explained above.

Eigenvalues can be realized in several discourses. They can be realized in the discourse of
vectors. For example, there exists a vector v # 0 such that A -v = -V is a narrative within
this discourse. Procedures of vectors can be used on the eigenvectors.

The mathematical object eigenvalue can also be realized as the root of a polynomial. This
discourse includes narratives such as the algebraic multiplicity of the eigenvalue is the
multiplicity of the eigenvalue as root of the characteristic polynomial and if' 1 € C is a root of
a real characteristic polynomial, then cong(4) is also a root. This discourse uses properties of
scalars and polynomials.

Eigenvalues can also be realized within the discourse of matrices, as they are a property of
matrices. For example, the narrative 0 is an eigenvalue of all non-invertible matrices is within
the matrix discourse.

The mathematical object diagonalizable matrix can be realized in three subdiscourses —
matrices as vector spaces, vector spaces of n-tuples and by matrices with their scalar
properties. The mathematical object eigenvalue can be realized in three subdiscourses —
vectors, polynomials, and matrices. These are the branches of the DMT, shown below.
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Figure 5-8 DMT Diagonalizable Matrices

5.4 Summary of chapter

The DMTs of all the tasks demonstrated that these tasks have the potential for authoring
multiple realizations in multiple discourses, for constructing links between discourses and for
transitioning between multiple discourses.

The commognitive analysis of the SLE task showed how solving this task encouraged these
transitions. This task includes impasses, where the student has no available routines to
continue within the discourse. At these nodes of the solution, there were other

readily available routines in different discourses. There were

opportunities for bonding between the final step end of a subroutine in one discourse and the
first step in another discourse. Thus, this task encouraged transitioning between discourses
and supported saming of realizations. Similar analysis was done on the other tasks and
showed that such impasses that necessitated traversing between discourses were common in
all the tasks. That is, these tasks have the potential to encourage explorative participation and
include both object-level and meta-level learning.
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6 Constructing DDMTs based on implementations of the tasks in

linear algebra workshops
The previous section examined the potential of tasks designed to support explorative
participation and encourage student learning. The potential of a mathematical task was
defined as the capacity to provoke discussion, including compelling students to author
realizations and links and providing the teacher with opportunities for highlighting unfamiliar
links. Operationally, this potential was determined as the inclusion of multiple realizations
and the athouring of links between these. As described in the methods section and the
previous section, DMTs were constructed for six linear algebra tasks to examine the potential
of these tasks.

The tasks afforded opportunities for both object-level learning and meta-level learning. At the
object level, they afforded opportunities for authoring narratives within multiple
subdiscourses. At the meta-level, they offered opportunities for authoring narratives in the
coalesced discourse. This section looks at the implementations of these tasks to examine were
the opportunities for explorative participation taken up and in what ways.

Explorative participation, as described in the theoretical background, consists of authoring
object-level narratives in multiple discourses and connecting realizations from within
separate subdiscourses. These connections are constructed by authoring narratives in the new,
coalesced discourse. Thus, my goal for mapping the lessons was to examine if there were
realizations from within different subdiscourses and were connections between these
subdiscourses authored.

| mapped the realizations authored during the whole classroom discussion on a Discussion
Discourse Mapping Tree (DDMT), which is a utilization of the DMT. The construction of the
DDMTs, based on an actual discussion, includes both a priori and a posteriori components.
The branches of the DDMT were drawn a priori, using the branches from the DMT. The
branches are the available subdiscourses within which object-level narratives can be authored
about this object. The drawing of the realizations on the branches was done a posteriori and
based on what was mentioned in class. The construction of the DDMT supported mapping
which subdiscourses were mentioned, which connections between subdiscourses were
authored and who authored these.

This section first exemplifies the construction of a DDMT for a whole class discussion in a
single workshop and then presents DDMTs from other workshops and what can be construed
from these images.

6.1 An example of constructing a DDMT based on the recording of a whole class
discussion in a workshop

6.1.1 DDMT for Workshop W5

This section displays the process of constructing a DDMT for workshop W5. The DMT for
the task discussed in the workshop is in Section 5.3.1.5. This workshop was chosen to
exemplify the construction process since it represents a typical workshop. It included
multiple realizations and links, but not all the possible ones. Thus, the mapping described
below can be considered as the process used for constructing all the DDMTs from the
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workshops. This workshop took place in the second half of the Winter 2020 semester. The
students were from the Algebra A course. The discussions were held in Hebrew.

The workshop was based on the following task:
Task: T: Zs — Z2 is a linear transformation such that T(1,2,3,4) = (0,0,0,0).

1) For which values of n € N does there exist such a T so that dim Ker T = n?
For those values of n give an example of such a T and find a basis of Ker T.

2) If, in addition, there exist 3 vectors vi, V2, v3 such that T(vi) = T(v2) = T(vs), which
values can dim Ker T take?
3) Construct a T that fulfills the given conditions and also Ker T =1Im T.
4) Construct a T that fulfills the given conditionsand also Ker TN Im T =
sp{(1,2,3,4)}.
The workshop started with 7 minutes of a reminder of the basic theorems and definitions
pertaining to linear transformations. Some of the definitions were written on the board by me,
such as the linearity property of the transformation (V a« € F,vVu,v € V it holds that
T(au+v) = aT(u) + T(v)). Some were authored by the students after prompting. For
example, I asked the students what the image of the zero vector is, and they answered it is the
zero vector. Another example is that the students dictated to me the second dimension
theorem (dim Im T + dim Ker T = dim V), which I wrote on the board. Some of the
properties were in the subdiscourse of functions and some were in the subdiscourse of vector
spaces. The linearity property can be stated in the subdiscourse of functions and the second
dimension theorem, which pertains to the dimension of subspaces, uses the subdiscourse of
vector spaces. This introduction reminded all the students of narratives in multiple
subdiscourses. The students were familiar with these narratives and the subdiscourses were
available to them for solving the tasks.

After the launch of the task, the students worked on the task in pairs for 15 minutes. This was
followed by a whole class discussion that was 21 minutes long. The analysis herein focuses
solely on the whole class discussion part.

The discussion about the first question of the task was rich and long, therefore the solutions
to the other questions were only mentioned with minimal discussion. There were seven
students in the classroom, and they all participated in the discussion. Some talked from their
seats, and some came to the board to write out examples or to point to examples already
written.

The construction of the DDMT commences by deriving its node and its branches from the
DMT. The realizations drawn on the DMT used to determine these are not used. That is, the
DDMT starts with an empty, labelled tree. This can be seen in Figure 6-1, below.

LINEAR
TRANSFORMATION

L Sub space ] [ Matrices ]

T

Figure 6-1: Blank DDMT for Workshop W5
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Based on the recording of the whole class discussion, realizations that were mentioned were
drawn on the appropriate branch and connections between realizations that were mentioned
were also drawn. Dark boxes and solid lines were authored by students and light boxes and
broken lines were authored by me, the instructor. The DDMT is below (see Figure 6-2) and is
followed by a description of the mapping process.

LINEAR
TRANSFORMATION [~
~.

B e

DimKerT=0 T(1,2,3,4) = (0,0,0,0) Matrices
| T(0,1,0,0) = (0,1,0,0) |
T(0,0,1,0) = (0,1,0,0) |
T(0,0,0,1) = (0,0,0,1

Injective

Solution of
[T]x=0

Algebra A Hebrew

Figure 6-2 - DDMT Workshop W5

6.1.2 The mapping of Workshop W5

The discussion started by me asking does there exist a linear transformation such that dim
Ker T=0. This is a realization of T in the subdiscourse of subspaces authored by the
instructor (me), therefore it was drawn on the subspaces branch of the DDMT in light grey
and is labelled (1). The students answered “no” and justified their answer by explaining that
there is a vector in the kernel, since T(1,2,3,4) = (0,0,0,0). This narrative, authored by the
students, is in the subdiscourse of functions, as it claims that the image of (1,2,3,4) is zero, so
the box labelled (2), in dark grey, was drawn. The students also connected between these two
narratives and authored a narrative in the coalesced discourse, that if T(1,2,3,4)=0 then the
dimension of the subspace, Ker T, is greater than zero. This connection is labelled (I) on the
DDMT.

During the small group discussion, | noted that the students had constructed various examples
for different values of n. Thus, | next asked for someone to give their example for n=1. A
student volunteered to come to the board and said, “We can define the linear transformation
by its behavior on the basis” and wrote as column vectors four vectors, which he later
labelled ay, a2, a3, and as, on the board. After justifying that {ai, a2, a3, a4} was indeed a basis,
the student said that we can choose T(1,2,3,4) = (0,0,0,0) to fulfil the condition given in the

57



question. He next explained that in order that dim kerT =1 the only other condition necessary
is that the image of the other vectors be anything except for 0. He wrote:

o)
05}
5}
5}

1 2 3 4

T(as) = T(as) =

oS O O
o RO O
_ OO O

1\ /0\ /0\ /0
2\ (1)\[0o])[o0 T(a) =0 T(az)=
3/\o]{1]lo
4/ \o/ \o/ \1

Figure 6-3 - Reconstruction of writing on board 1

This is a realization in the subspace subdiscourse and so box 3 was drawn in dark grey. For
the sake of this discussion, I call this linear transformation T1.

I mentioned that the final answer would need to be given in the general case, so the
realization labelled (4) in the subdiscourse of functions was drawn. | asked if they all know
how to do that and some students acknowledged this, so a connection was made between
these two realizations. This was authored by me, the instructor, and so was marked as a
broken line and is labelled (I1) in the DDMT.

After asking the class what the dimension of the kernel of Ty is, | changed the example on the
board so that T(a2) = T(as).

a4 dp d3z dg
1N /0N /0N /0 ‘i (1’ 8
2| (1)[o)[0) T@)=0 T@)=(}] T@)=(}|T@)=|"
31 loll1]lo
4/ \o/ \o/ \1 0 0 1

Figure 6-4- Reconstruction of writing on board 2

| claimed that this transformation, which for this discussion | call T2, also fulfils the student’s
condition (that the image of all the other three vectors in the basis are not zero) and asked the
class what the dimension of the kernel of T is. Since | authored this realization of a linear
transformation box (5) was drawn in light grey in the DDMT. The students expressed
hesitation, so | asked, what is the kernel of T1? A student said the span of (1,2,3,4), and thus
box (6) in the subspace subdiscourse was drawn. Then | asked what is the kernel of the linear
transformation T2? A student said, “now its dimension is 2 and so box 7 was drawn.

A different student then asked, “is what we defined even a linear transformation?” This
question led to a discussion of the existence and uniqueness of a linear transformation defined
on the basis. First, one student claimed that the definition of T> such that T(0,1,0,0) =
T(0,0,1,0) = (0,1,0,0) contradicts the definition of T as a function. The realization (8) in the
function subdiscourse was drawn. | explained the difference between well-defined and
injective, and so box (9) was drawn.

Next, as part of proving that a linear transformation defined on the basis is well defined, a
student showed that T2(1,2,3,4) + T2(0,1,0,0) = T2((1,2,3,4) + (0,1,0,0)) on the board. This is
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one of the basic, defining properties of linear transformations and utilizes a realization of
linear transformation as a function, and so box (10) was drawn.

Another student said that since for T the set is not spanning the vector space, as opposed to
T1 which does, therefore T» is not well defined. His explanation of his question and my
restating of it elicited from other students that T is not surjective due to the kernel being not
zero, and thus box (11) was drawn, and connection (111) was marked in a solid line. | clarified
that the definition of surjective is that Im T =V and that Im T2 # Z2, and in the case of a
linear operator it is sufficient to say that Ker T # {0}. Box (12) was drawn, and line (IV) was
marked.

A student suggested to find the general case of the transformation T and so the connection
between the definition on the basis in the subdiscourse of basis was connected by a student to
the general case in the function subdiscourse, labelled (V). This was written out on the board
with the students telling me what to write. Therefore, this was considered as a student-
authored link. To conclude this part of the discussion, the theorem of existence and
uniqueness of a linear transformation defined on a basis was mentioned and described.

| went back to the definition of T and asked the class what is dim Ker T,. There was some
discussion about the dimension theorem (dim Ker T + dim Im T = dim V) and its corollaries
if T is an operator. A student asked which two vectors can be in the kernel and another
student suggested that the vector az>-az = (0,1,-1,0) is in the kernel, since T2(az2-as) = T2(a2) —
T2(as) = 0. The student authored the realization T(0,1,-1,0) = T(0,1,0,0)-T(0,0,1,0), which
was labelled (13). I explained to the class that this is similar to the difference between two
solutions of a non-homogeneous system of linear equations, which is a solution of the
connected homogeneous system. Thus, a realization in the matrix subdiscourse was authored,
labelled (14), and a connection labelled (V1) was noted. | mentioned that the solution of the
homogenous system is the kernel of the transformation, and thus connection (VII) was made
between the matrix representation of the homogenous system and the kernel.

6.1.3 Summary - the mapping of Workshop W5

To conclude, there are characteristics of the implementation of the task that are discernable
from the image of the discussion as portrayed on the DDMT. There were seven realizations
mentioned from within the subdiscourse of functions (boxes 2, 4, 8, 9, 10, 11, and 13). Six
realizations were mentioned in the subdiscourse of subspaces, including narratives of
subspaces as sets (boxes 1,6,7, and 12) and narratives of subspaces as vectors (boxes 3 and
5). Additionally, a narrative from the subdiscourse of matrices was authored (box 14). There
were multiple realizations authored during the discussion, both by the students and by the
instructor. There were also links authored during the discussion. Five connections were
authored between the subdiscourse of functions and the subdiscourse of subspaces, two
authored by the instructor (links Il and V), and three of them were authored by the students
(links I, 111, and V). One connection was authored between the subdiscourse of functions and
the subdiscourse of matrices (link V1) and one connection was authored between the
subdiscourse of subspaces and the subdiscourse of matrices (link V11).

The class authored realizations in multiple discourses and linked between them, that is they
participated exploratively in the discussion. The class also practiced procedures from within
the different subdiscourses and narratives from the coalesced discourse of linear
transformations were encouraged, supported and authored. That is, there was both object-
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level learning and meta-level learning in this whole classroom discussion. However, it must
be noted that the learning described here pertains to the class as a whole, and not to individual
students.

There were realizations authored by the students about using a basis to define a linear
transformation, linear dependence and linearity of the transformation. In these narratives the
students seemed fluent, that is the students were fluent in the subdiscourses. The discussion
supported their meta-level learning and the adoption of the coalesced discourse.

Although the DDMT reflects the discussion, there were some other tangential discussions
that do not show up on the DDMT. These discussions were about different mathematical
objects than what is mapped on the DDMT. For example, at the beginning of the discussion
there was a brief discussion if the set {a1 = (1,2,3,4), a2 = (0,1,0,0), as = (0,0,1,0), a4 =
(0,0,0,1)}, suggested by a student, is linearly independent. This discussion was not mapped
on the DDMT, as the narrative was from a discourse that is not apparent on the DDMT, that
is the discourse of linearly independent vectors. That discourse implicitly exists underlying
this DDMT and can be considered as the preceding discourse that the students were expected
to have adopted. Similarly, there are narratives from within even more basic discourses, such
as adding scalars or adding vectors, that are not apparent on this DDMT. The choice of which
narratives to note considers what objects are the focus of the lesson and what objects are
considered previous knowledge and are already objectified by the students. Thus, in this
section narratives from within other, previously learned discourses were not mapped onto the
DDMT.

6.2 Explorative opportunities in all the workshops

There were 11 whole class discussions recorded. DDMTs were constructed for these, in a
similar method to what was described above. The whole class discussions in the various
workshops included authoring realizations in varying degrees and connecting between these
realizations. In this section, six DDMTs exemplifying the discussions and the characteristics
that supported explorative participation made apparent by this mapping are displayed and
discussed. The use of subdiscourses, how many and which, was examined as authoring
realizations in multiple discourses is part of explorative participation. | also examined an
aspect of the agency given to the students, as displayed by who authored the realizations and
the connections, since this is also an aspect of explorative participation. Finally, explorative
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participation includes connecting between the realizations, and thus the links drawn on the

DDMTs were examined.

6.2.1 Workshop S1, Spring 2019, Complex Numbers, Algebra 1E

Algebra 1m English
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—
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(i . h Geometric Polar R2 Polynomial root
Algebraic :
344 ' 5cis(53.13) (3,4 Root of:
' ) ) \ x2—6x +25

Figure 6-5 - DDMT S1 Complex numbers

Workshop S1 was in the second week of the semester and 14 students attended. The task was
to prove some claims about complex numbers. The intended goal was to use the multiple
types of representations and to discuss the connections between them. In general, the
discussion in this workshop was focused on the metarules of logic and proof, and not on
complex numbers. The first student who presented her solution to the class on the board
proved the wrong direction of the claim. That is, she assumed what needed to be proved, and
proved what was given. She proved z; = cong(zz) => z1- 22 €R instead of z1- z2€R => 71 =
cong(zz). This led me, the instructor, to ask questions about what was given and what can be
assumed. Similarly, subsequent discussions about the student’s presentations on the board
focused mainly on logic and proving. This workshop was at the beginning of the semester, so
the students were not yet familiar with all the meta-rules of logic and proof.

The discussion included many mathematical ideas and exposed the students to important
executive meta-rules of logic and proving. However, the discussion did not include any
opportunities for meta-level learning of the coalesced discourse of complex numbers, as seen
by the absence of any links drawn on the DDMT. The discussion, in Figure 6-5 above,
included realizations from within only a single subdiscourse - the algebraic subdiscourse.
This subdiscourse is the most familiar to the students. It is included in the secondary school
curriculum and does not use any trigonometric functions. As part of the conclusion of the
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discussion, I authored one realization in another subdiscourse and connected it to the already
mentioned realizations, as seen by the single light grey realization in the polar subdiscourse.

The DDMT, Figure 6-4, shows the single subdiscourse used by the students and the single
connection, authored by me, to a different subdiscourse.

6.2.2 Workshop W1, Winter 2020, Complex Numbers, Algebra A

Algebra A Hebrew COMPLEX ‘
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Figure 6-6 DDMT W1 Complex numbers

There were over 60 students in Workshop W1, which was in the second week of the
semester. It had the same task as Workshop S1 (Figure 6-5 above) and was held in the next
semester. Having become cognizant of the importance of the need to actively introduce
multiple subdiscourses into the discussion and encouraging hints of them in students' talk by
mapping the first workshop, | attempted to ensure that multiple subdiscourses be mentioned
in this discussion. | did this in two ways. First, | asked the students how the complex number
a+ib, in the algebraic subdiscourse, could be represented in another form. The students
suggested the realization rcisé in the polar subdiscourse. However, after this, the discussion
reverted back to the algebraic subdiscourse, possibly since this was the most familiar one to
the students.

My next attempt utilized an opportunity provided by a student’s justification for a claim. As
part of this justification, the statement (2+3i)? = (2+3i)(2+3i) was authored. | attempted to
ensure the discussion used the polar subdiscourse by asking how one would calculate
(2+3i)*". This question stimulated a student to give an answer using de Moivre’s formula
((rcis®)" = rcisn®), which can only be stated in the polar subdiscourse. Following this, more
realizations in the polar subdiscourse were authored.

The discussion in W1, Figure 6-6 above, included realizations from within two
subdiscourses. Yet, there were only minimal connections authored between the two
subdiscourses mentioned. After the workshop, I wrote in my teaching journal, “the discussion
included realizations in lots of discourses” (Journal, 5/11/2019). The DDMT showed that
although this was so, there were only minimal links. That is, there were minimal narratives in
the coalesced discourse. The main focus of the discussion in this workshop was also on the
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general mathematical meta-rules of proving and logic, as in Workshop S1, and not on the
connections between the subdiscourses.

The DDMT, Figure 6-5, shows the two subdiscourses that were involved in the discussion
and minimal connections between them.

6.2.3 Workshop W2, Winter 2020, Matrices, Algebra A

Algebra A Hebrew
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Figure 6-7 - DDMT Workshop W2 Matrices

Workshop W2 was in the fourth week of the semester and 15 students attended. The task
given was to suggest a claim about a product of two matrices that had certain properties and
to prove it. One matrix had a row of zeros and the other matrix had a column of zeros. The
goal for the workshop was to lead the discussion to discuss the different realizations of
matrices and to compare them. The discussion included many realizations and multiple links
between subdiscourses.

In this workshop | ensured that multiple discourses were mentioned. This was done in several
ways. First of all, | ensured that the logic of the claims and the proof was correct. At the start
of each proof I asked, “what are we proving?” and “what is given?” There was minimal
discussion about the metarules of logic, and so there was sufficient time for a meaningful
discussion about matrices.

Another way | ensured that there were multiple subdiscourses was by actively suggesting that
the students use other subdiscourses. After a student authored and proved a claim about
symmetric matrices using the elements of the matrices (DCij = Y Dy Cy;) | asked the class,
“how else can we prove it”? This elicited some mumbled suggestions, and no usable
narratives in other subdiscourses were authored. | next attempted to explicitly ask for a
narrative in another subdiscourse by saying, “some students used a picture with dots. Can we
use that?” This justified their use of narratives in the subdiscourse of visual descriptions.
Following this, a student presented a proof on the board using a picture of an array of
numbers. This was followed by a discussion if this type of proof is considered acceptable, i.e.

63



would such a proof receive points on an exam. This discussion gave validity to other types of
proofs. Following this, the students volunteered proofs of various types using narratives from
multiple discourses, as seen on the DDMT (Figure 6-7).

Once the students authored multiple realizations from within multiple subdiscourses, the
discussion could be focused on discussing the connections between these realizations. After
multiple types of proofs were presented, I started a discussion by asking, “which type of
proof is best?” This led to comparing and contrasting the different types of proofs and
deliberating which type of proof is suited to what type of task. This included multiple
narratives in the coalesced discourse, as comparisons between narratives in the subdiscourses
were made. The multiple connections apparent on the DDMT were enabled by the existence
of many realizations in multiple discourses, without which the discussion would have been
pointless.

The discussion about what is considered an acceptable proof included many narratives in the
new coalesced discourse. Yet, it was also about the metarules of proving and what is
considered an acceptable proof. The executive metarules of proving still needed discussion,
but in this case the discussion was not instead of a discussion about the topic being discussed.
Thus, the discussion about the metarules of proving was harnessed to support authoring
narratives in the new coalesced discourse.

The DDMT, Figure 6-7, shows multiple subdiscourses and numerous links. The realizations
were mainly authored by students, and the links were authored both by the students and by
me.
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6.2.4 Workshop W4, Winter 2020, Linear Independence, Algebra A
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Figure 6-8 — DDMT Workshop W4 Linear Independence

Workshop W4 was held during the eighth week of the semester with 24 students on the topic
of linear independence. The task asked to either prove claims or to give a counter example for
these claims. The students were familiar with the narratives in the subdiscourses and were
comfortable authoring narratives in the coalesced discourse.

The students’ familiarity with the different realizations of linearly independent vectors could
be due to the timing of the workshop. Due to technical issues, the workshop was held later
than planned in the syllabus, and the students had practiced using these narratives. The
students used the different discourses interchangeably and the connections between the
discourses were obvious to the students. For example, a student stated “they (the vectors) are
linearly independent since the matrix (whose rows are representatives of the vectors) is
reduced”. The first half of this narrative is from within the subdiscourse of vectors and the
second half of the narrative is from within the subdiscourse of matrices. Thus, the narrative
connects between two subdiscourses and is in the coalesced discourse of linearly dependent
vectors. The connections were elicited from the students after | insisted on their justifying
narratives by asking, “how do you know that?” and “Is that the definition of linear
independence?”” The students’ familiarity with the various realizations allowed them to author
all the connections seen on the DDMT, Figure 6-8, but they did not author these links without
my asking for them.

The students seemed most familiar with the subdiscourse of matrices. They mostly justified
their claims pertaining to linear dependence using narratives about echelon reduced matrices.
Students stated that the matrix is reduced and did not expand their claims, as this was deemed
by them sufficient proof. In contrast, statements using scalars or linear combinations to
justify linear independence had continuations such as “then the matrix is reduced”. That is,
the students associated linear independence with realizations in the subdiscourse of matrices.
This subdiscourse does not include any of the formal definitions of linear independence. It
does include a very well-defined procedure for determining linear independence. The use of
the matrix subdiscourse in this manner was also apparent in the other workshop held on linear
dependence in the Spring semester.

65



To conclude, the DDMT, Figure 6-8, shows realizations in multiple subdiscourse with links
all authored by the students.

6.2.5 Workshop W5, Winter 2020, Linear Transformations, Algebra A
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Figure 6-9 — DDMT Workshop W5 Linear transformations

Workshop W5 was in the eleventh week of the semester and 7 students attended. The
construction of this DDMT was presented in the first half of this section. The discussion
focused on the task of constructing linear transformations with certain properties. The main
goal of this task was to demonstrate the advantages of exploring properties of linear
transformations by using bases to define the transformation.

During the discussion, initially the students authored narratives from within only a single
discourse, that of functions. This could be seen, for example, in the statement “it’s injective”
(pertaining to the realization of the linear transformation as a function) being sufficient for
the students and not needing any explanation. In contrast, for the equivalent statement “the
dimension of the kernel is greater than zero” the students demanded explanation and
connected it to the transformation being injective.

In the discussion, I attempted to support and encourage the students’ use of the subdiscourse
of vector spaces, since it was the newest discourse for them. For example, defining linear
transformations on bases (that is, in the discourse of vector spaces) is a more efficient method
of exploring their properties. However, the students did this only after being prompted by me.
During the small group period, | noted that the students were attempting to explore the
properties of linear transformations they had constructed randomly, mainly by relying on the
discourse of functions. That is, they gave the general case of the transformation, for example,
T(X,y,z,w) = (X-y, X-Y, X-Yy, X-y), and then attempted to examine if this transformation
fulfilled the properties required by the question. To assist them in linking to the other
discourses, I first asked leading questions, such as, “Could you define the linear
transformation differently?” Sometimes, I explicitly mentioned the alternative discourse, such
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as when I asked, “what defines a vector space?” This sufficed for some students to then turn
to using bases, yet others still did not. In those cases, | explicitly suggested moving to the
discourse of vector space, by suggesting that they use a basis to define the transformation.
My monitoring work in the small groups supported the use of both discourses (functions and
vector spaces) in the whole class discussion, since the students had all authored narratives in
both discourses while working in groups.

The DDMT also reveals the neglect of the discourse in matrices in this discussion. Although
one realization in this subdiscourse was authored and the connection to the other discourses
was mentioned, there was no meaningful discussion within this discourse. The matrix
realization and connection to a realization in the function subdiscourse and to a realization in
the subspace discourse were authored by me, and the students did not continue using any
matrix realizations in their own justifications. The subdiscourse that represents linear
transformations as matrices was introduced in the lectures later. It is thus possible that,
although students were already quite familiar with the discourse of matrices, they were not
familiar with them as realizations of linear transformations.

To conclude, the DDMT in Figure 6-9 shows that students authored narratives from within
two discourses — the discourse on functions and the discourse on vector spaces.

The DDMT also shows that although I actively tried to introduce the subdiscourse of matrix
representation, it was not taken up by the students.

6.2.6 Workshop W6, Winter 2020, Diagonalizable Matrices, Algebra A
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Figure 6-10 — DDMT Workshop W6 Diagonalizable matrices

Workshop W6 was in the last week of the semester and 25 students came. The task given was
to give conditions on parameters such that a matrix, whose elements were these parameters,
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would be diagonalizable. This workshop was held during the last week of the semester, when
the topics of eigenvalues and diagonalizable matrices are taught. The intended focus of the
discussion was diagonalizable matrices. Therefore, the object chosen as the main node of the
DMT and the DDMT was a diagonalizable matrix. Discussing this object, at that point of the
course included narratives in the subdiscourses of matrices, similarity of matrices, vector
spaces and scalars. For example, the narrative “there exists a basis of eigenvectors for the
vector space F" is from within the subdiscourse of vector spaces F". The narrative “there
exists an invertible matrix P and a diagonal matrix D such that D = PAP” is from within the
subdiscourse of the vector spaces F™". These narratives use eigenvalues and eigenvectors, but
as an underlying discourse, as discussed when the DMT was presented in Section 5.3.6.

At the time of the workshop, most of the students had only been in lectures, and not in
tutorials, about eigenvalues and diagonalizable matrices. None of them had done homework
problems on either of these. The students were not sufficiently comfortable with the
narratives about eigenvalues, and they needed support to author narratives within the
subdiscourse of eigenvalues. The discussion was not on the intended object — diagonalizable
matrices. It was about eigenvalues, an object which is part of a subsumed discourse, and is
mapped on a subtree of the main tree. The discourse of diagonalizable matrices includes
object-level narratives that are meta-level narratives in the eigenvalue discourse. For
example, the narrative all the roots of the characteristic polynomial are of multiplicity 1,
therefore the matrix has eigenvalues with algebraic multiplicity 1. This narrative is in the
coalesced discourse of eigenvalues, as it is constructed from a narrative in the subdiscourse of
polynomials and from a narrative from within the subdiscourse of matrices. This same
narrative is an object-level narrative within the subdiscourse of the scalar properties of
diagonalizable matrices. That is, the discussion focused on object-level narratives from
within a subdiscourse, instead of on the meta-level narratives from the coalesced discourse of
diagonalizable matrices. The scalar properties subdiscourse includes procedures that are
familiar to the students, such as finding roots of a polynomial. This could be the reason the
discussion was focused on that subdiscourse, and not on the other two available
subdiscourses for diagonalizable matrices.

The DDMT, Figure 6-9, shows that the discussion included realizations from within two
subdiscourses on the main tree — the subdiscourse of vector spaces F™" and the subdiscourse
of scalars and polynomials. In addition, three subdiscourses were used on the subtree of
eigenvalues — the subdiscourse of vectors, the subdiscourse of scalars and polynomials and
the subdiscourse of matrices. In the main tree there is only one connection, authored by me.
In the subtree of eigenvalues there are multiple connections also authored by me. The
students were not familiar with the narratives from within the subdiscourses, and the small
number of links authored in the discussion were authored by me.

The DDMT for the other workshop on diagonalizable matrices, which was given in the spring
semester, Workshop S5, showed a similar picture. That is, most of the realizations and
connections were in the subtree about eigenvalues, and not about diagonalizable matrices,
and the links were mostly authored by me.

The DDMT showed that when the students were not sufficiently familiar with the underlying
mathematical objects, the discussion turned to the underlying objects. The discussion
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provided opportunities for narratives in a coalesced discourse, however the discourse was not
the expected one.

6.3 Summary of the DDMT analysis

The 6 DDMTSs shown above exemplify the DDMTs of all 11 workshops. In most cases, the
implementation of the tasks included numerous opportunities for authoring realizations in
multiple discourses and for authoring connections between these realizations. That is, there
were opportunities for the students to participate exploratively. Additionally, there were
opportunities for the students to author narratives in the new, coalesced discourse which
supported meta-level learning. I now turn to some general observations about the workshops
that resulted from the DDMT analysis.

In most of the DDMTSs there is a single branch that is more densely filled than the others or
most links lead to a single branch. This shows that from within the discourses available for
each topic, there was usually one discourse that was more dominant in the discussion. Thus,
students explained their ideas and justified their claims by linking to narratives in this
discourse and relied on this discourse as the base of their narratives. In some cases, this
dominant discourse was more familiar to the students. For example, in the linear
transformations workshop, Workshop W5 (Figure 6-8), the students justified claims with
narratives from within the functions discourse, probably since it was familiar to them from
secondary school and from their calculus courses. In other cases, the dominant discourse had
clear procedures. For example, in the workshop on linear dependence, Workshop W4 (Figure
6-7), the students’ justifications about linear dependence were mostly in the discourse of
matrices, where reducing to echelon form was a well-rehearsed procedure familiar to the
students from lectures, tutorials and their homework. The students clung to the dominant
subdiscourse and to familiar procedure within it, and the use of other subdiscourses had to be
encouraged actively.

In the discussions that had more student authored links there were also more realizations
authored by the students. In those discussions, the students were familiar with the narratives
within the discourse, and thus the discussion could be focused more on linking between the
discourses. For example, in the workshop on matrices, Workshop W2 (Figure 6-6) once the
students authored multiple realizations from within multiple discourses, the discussion could
be focused on discussing the connections between these realizations. Conversely, in the
workshop about diagonalizable matrices, Workshop W6 (Figure 6-9), where the students
were not familiar with an object from within the discourses, the small number of links
authored in the discussion were authored by me. The discussion in that case was focused on
the narratives from within the subdiscourses. Thus, construction of links between
subdiscourses were dependent on the familiarity of the students with the narratives within the
subdiscourses.

The DDMT analysis also highlighted how the instructor provided opportunities for
explorative participation during the discussion. First, the focus of the discussion was guided
by the instructor’s questions. When the students were not familiar with general mathematical
meta-level rules, | changed the focus of the discussion to the missing meta-rules. This was
seen, for example, in the workshop about complex numbers, Workshop S1 (Figure 6-4),
where the students were not familiar with the metarules of logic and proof. In those
discussions, the focus was on these metarules and not on linking between the different
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discourses of complex numbers. Similarly, when the students were not familiar with the
object-level narratives of a discourse, the discussion was focused on the narratives and
connections within the discourse. This was the case in the workshops about diagonalizable
matrices, Workshop W6 (Figure 6-9), where the discussion was mostly focused on the
underlying discourses of eigenvalues and not on the discourse of diagonalizable matrices. In
discourses that students were sufficiently familiar with, focusing the discussion afforded the
students opportunities for explorative participation in the new discourse.

The instructor also provided opportunities for explorative participation by ensuring that the
discussion included multiple discourses. In some of the workshops the students authored
narratives from within only a single discourse. Other discourses were introduced by me
through authoring narratives from within these discourses and by implicitly introducing other
discourses through questions. For example, initially in the workshop about matrices,
Workshop W2 (Figure 6-6), the students authored narratives from within the discourse of
scalars and the general element of matrices. | asked the class questions in an attempt to elicit
realizations in other discourses and | also explicitly requested a realization in the visual array
of numbers discourse. Thus, this workshop included multiple discourses, and the opportunity
for explorative participation was afforded to the students. The multiple subdiscourses
included in the discussion also afforded opportunities for linking between these
subdiscourses, which is an aspect of explorative participation and supports meta-level
learning.

When examining the DDMTs it becomes apparent that, mostly, many of the links between
discourses were authored by me, the instructor. In places where students authored links on
their own, these were usually elicited by leading questions from me, asking for justifications
such as “how do you know?”” and “is it always true?”” Thus, the instructor’s contributions and
prompts can be crucial in connecting between multiple discourses, which is an integral part
of explorative participation and meta-level learning.
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7 Learning processes involved in a dyadic mathematical discussion

without the support of an expert

The linear algebra workshops are constructed of mathematical tasks, instructor actions and
student involvement. In the first section, | examined what potential the tasks afford for
learning linear algebra. In the next section, | analyzed the whole class discussions and
examined to what extent opportunities for meta-level learning were taken up. | examined in
what ways meta-level learning was supported by the workshops, and how the instructor
encouraged this. Yet the main part of students’ independent exploration and struggle with the
tasks took place in the collaborative learning phase of the workshops. Additionally, the
recorded discussions between the students in the small groups could better expose their
individual discourse than the analysis of multiple participants’ discussions. Thus, I analyzed
the discourse involved in the students’ collaborative interactions in the small group
discussions to examine the learning processes involved in a collaborative learning episode
without the support of an expert.

This section utilizes a commognitive discourse analysis of dyadic interactions to examine
collaborative learning in small groups and the processes involved. This chapter first presents
an overview of the workshop and then examines the learning processes of a seemingly
successful, egalitarian interaction by examining how a pair of students’ routines changed
during such an interaction. The pattern of interpersonal communication is next explored, as
ineffective communication can hinder collaborative learning. Next, the objects and object
related metarules involved in the discussion are analyzed to examine how these shaped the
discussion. Finally, the interaction between a second pair of students is presented.

7.1 The linear dependence workshop and the task situation

The discussion between the students was in the context of a workshop, the details of which,
obviously, impacted the discussion. These are presented in this section as a background and
as the context of the students’ discussions. The two episodes are from different semesters, yet
they both are from workshops that dealt with the topic of linear dependence. All the
workshops began with a reminder of the basic definitions and theorems that were presented in
lectures and tutorials. The basic definition of linear dependence was written on the board in
the appropriate language, and it was on the board during the students’ discussions that are
analyzed in this section.

The definition written on the board:

V is a vector space over F. The set {vs,...,vn} = Vis linearly dependent over F if
there exist ay,...an € F, not all zero, such that Zojvi = 0. Otherwise, the set is linearly
independent.

After the introduction, the students were presented a task printed on a paper to solve in small
groups of two or three students. The task given to the students included four assertations to
determine if they were true or false. In the Spring semester the instructions on the worksheet,
which was in English, stated:

V is a vector space over the field F. Are the following statements true or false?
If a statement is true, prove it.

If a statement is false, give a numerical counter example.
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In the following semester, based on what occurred in the Spring semester, the worksheet was
modified, and the following line was added to the instructions:

If a statement is sometimes true, give an example for which it holds and an example
for which it does not hold.

The four assertations, in both semesters, were:

1. {ug, uz, us}< Vis alinearly independent set and us € V, then the set {u1, uz, us, Us} is
linearly independent.

2. {u1, Uz, Us}< V isa linearly dependent set and us € V, then the set {us, Uz, us, Us} is
linearly dependent.

3. {ug, Uy..., us}< V isa linearly dependent set, then Span{us, U,..., us} = Span{us,
us,..., Us}-

4. {ug, Uy ..., us}< V is a linearly independent set, then Span{us, Ua,..., us} = Span{us,
us,..., UG}-

The analysis presented in the next sections examines the students’ discussion of the proofs of
the assertations. The two pairs of students, from different semesters, worked on the same
task. Assertation 2, from the above task, always holds and can be proved in many ways. It
can be proved succinctly by using the theorem that states that a set including a linearly
dependent set is linearly dependent. Thus, the set {us, uz, us, us}, which includes the linearly
dependent set {u1, uz, us}, is linearly dependent. This proof, although efficient, does not give
any intuition and requires familiarity with that specific theorem. A more detailed proof using
only the basic definition of linear dependence starts with the given that {u1, uz, us} is a
linearly dependent set. Thus, according to the definition of linear dependence, there exist

scalars, a, B, veR, not all zero, suchthat a-u; + B-u, + vy u; = 0. Since 0 - Uy = 0, it
alsoholdsthata - u; + Bru, + vy us + 0 - uy = 0. That is, there exists a linear

combination of the four vectors whose scalars are not all zero, and the set, {us, uz, us, us}, is
linearly dependent.

7.2 Hadar and Yaniv — an egalitarian pair with a seemingly successful collaborative
learning session

Hadar and Yaniv (pseudonyms) were students in the Algebra A course in the Winter 2020

semester. They chose to participate in almost all the offered workshops. They were both first

semester students studying towards a degree in computer science. They were sitting near each

other when they were asked to work in small groups, and so they worked together. They did

not have any prior acquaintance with each other.

As described more fully in the methods section, a preliminary analysis of all the recordings
yielded Hadar and Yaniv’s interaction as potentially illuminating. The two students both
authored mathematical narratives, they both questioned the other’s claims and they both
seemingly advanced in some aspects of solving the task. Moreover, the initial observations
revealed that Hadar and Yaniv explicitly disagreed at the beginning of their interaction and
later advanced to a collaboratively constructed narrative, which I assessed as canonical. Thus,
the pair’s narratives seemingly advanced through learning during their interaction. The
processes of this seemingly productive, joint interaction could shed light on learning
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processes in a successful, collaborative interaction. Therefore, the dyadic interaction between
Hadar and Yaniv was analyzed in depth.

7.3 The dyadic mathematical discussion

Altogether, Hadar and Yaniv worked in a pair for 10 minutes. First, they quickly solved the
first task by giving an example for which the first assertation does not hold and an example
for which it does hold.

1) True or false: {ug, u2, us}< V is a linearly independent set and us€ V, then the set
{us, uz, uz, us} is linearly independent.

Hadar suggested they use R* and the linearly independent set {(1,0,0,0), (0,1,0,0), (0,0,1,0)}
as an example of the set with three elements. Then, the pair discussed if an “abstract answer”
would be acceptable or do they need to use actual numbers. Hadar decided they need to use
actual numbers and suggested a vector, “we take zero in the last place then... and something
else and then linear independence”. The example she gave for a linearly independent set,
when the assertation holds, was {(1,0,0,0), (0,1,0,0), (0,0,1,0), (5,0,0,2)}. The pair did not
explicitly state an example for when the assertation does not hold, but it was clear they
considered it as possible. For this possibility Hadar described a vector for which the “last
place” has a zero. This implied that such a set is a simple and obvious example of an instance
where a vector added to the first set yields a set with four vectors, that is a linearly dependent
set. For example, the set {(1,0,0,0), (0,1,0,0), (0,0,1,0), (5,0,0,0)}.

The pair next turned to the second assertation, on which most of the rest of the interaction
was spent. There they disagreed. The assertation was:

2) True or false: {us, uz, us}< V is a linearly dependent set and us€ V, then the set
{u1, Uz, us, us} is linearly dependent.

7.3.1 Task situation, initial routines and co-constructed final chain of narratives

The full transcript of the pair’s discussion of this assertation is in Appendix C1, Section
10.3.1. This section brings excerpts of the transcript when the exact formulation and words
are important for the analysis, otherwise a synopsis of what happened is provided. The pair’s
discussion started with the following excerpt.

27 Yaniv: Yes. It (the assertation) is definitely true.

28 Hadar: Alinearly dependent set, u belongs to V, all these together ({v«, v, us, us})
are linearly dependent...Are you sure it’s (the assertation) true?

29  Yaniv: |Ifit ({ug, uz, uz}) is already linearly dependent, and we add another vector,
this subset ({uz, u2, uz}) is still linearly dependent.

From the beginning of their work on this assertation, the students had different tasks. Yaniv’s
task was to prove that the set {us, Uz, us, us} is linearly dependent. He claimed that the
assertation is true [27], that is the set {us, uz, us, us} is linearly dependent and he gave a
justification for his claim [29]. This justification hinted at the procedure he used to determine
if a set is linearly dependent. This procedure used a theorem proved in the lecture - that a set
including a linearly dependent subset is a linearly dependent set. Thus, Yaniv’s initial routine
was using the procedure of finding a linear dependent subset to solve the task of proving that
the set is linearly dependent.

In contrast to Yaniv, Hadar’s initial task was to show the assertation was false. She attempted
to do so by proving that there exists a vector us such that the set {us, uz, us, us} is linearly
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independent when the set {us, uz, us} is linearly dependent. To do this, Hadar suggested the
set {(1,0,0,0), (2,0,0,0), (3,0,0,0), (0,1,0,0)} as a counter example to the assertation. To justify
her claim, Hadar used an idiosyncratic procedure, the details of which will be described later
in this section, where she explored the status of each vector in the set, determining whether it
was "linearly dependent™ or not. Hadar’s initial routine was to use her idiosyncratic procedure
to solve the task of suggesting a counter example.

Hadar and Yaniv’s final co-constructed proof of the assertation differed from each of the
individually authored proofs. Moreover, the final chain of narratives included pieces of both
initial narratives and new narratives that they both agreed to. The process of co-constructing a
proof started with Hadar claiming that there was a way to construct a counter example to the
assertation:

38 Hadar: The 3 (vectors) are (Linearly dependent). But the fourth isn’t. So, the entire
set is linearly independent

39  Yaniv: Why?

40 Hadar: Because...Because it’s possible (to construct such a set). You can bring
ul=(1,0,0,0) ; u2=(2,0,0,0); u3=(3,0,0,0); u4=(0,1,0,0) [writing this
example as she talked]

41 Yaniv: Then it ({vw,us,ueusl) is still linearly dependent.

42 Hadar: How is it linearly dependent?!

43 Yaniv: No, it (the vector) isn’t — but the set altogether is.

44  Hadar: Why? If you find scalars, that not all of them are zero...?
45  Yaniv: That means that it is linearly dependent

46  Hadar: And this (the linear combination) won’t be equal to zero, because this
(«4), you cannot neutralize if you don’t put a zero for him

47 Yaniv: Yes. But it doesn’t matter if it (the scalar multiplying u.) will be zero, if
all the rest uh...if there is one

This excerpt displays Hadar’s idiosyncratic procedure for determining if a set is linearly
independent. In [38] she hints that, for her, linear independence is a property of single vectors
(“the fourth isn’t (linearly dependent)”). Hadar’s procedure involves examining the status of
each vector in the set, and if at least one vector is linearly independent then she concludes
that the set is linearly independent. Her procedure for examining the "linear dependence” of
each vector is further revealed in her statement, “this (¢4 vector (0,2,0,0)), you cannot cancel

out if you don’t put a zero for it” [46]. This procedure examined whether the scalar used to
"cancel out" the vector (0,1,0,0) is 0, and if so, determined that the vector (0,1,0,0) is a
“linearly independent” vector.

In response to Hadar’s suggestions, Yaniv continued to insist that the set she was suggesting
was still linearly dependent [47]. However, he did not object to Hadar’s procedure of
“canceling out” vectors by checking which scalars “cancel them out”. Following some more
discussion, where Yaniv convinced Hadar that her procedure could still lead to linearly
dependent sets, Hadar backed up from her original suggestion and instead used her procedure
of "canceling out” vectors to prove Yaniv’s claims.

78 Hadar: Then...if we have all sorts in the set, and we put for all of them zero (we
put sealars that would nwullify them), but for the zero vector we put 3...
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79  Yaniv: That’s it. Exactly.

80 Hadar: Then the set becomes?

81 Yaniv: Linearly dependent.

82 Hadar: Dependent.

83 Yaniv: Yes.

84 Hadar: OK. That’s the idea. The idea...exactly the conclusion at the end.

After this discussion, Hadar changed her narrative to align with Yaniv’s (canonical) narrative.
She said, “Then wait a second...then...Wow! It’s hard to realize this. That it ({(1,0,0,0),

(2,0,0,0), (2,0,0,0), (0,4,0,0)}) will always be dependent...We are saying it’s (assertation
2) always true” [86]. Yaniv agreed and suggested that they formalize their proof, “It’s true.

We need to prove it” [87]. Now, their tasks of formalizing the proof that the assertation is
always true aligned and they concentrated on constructing this formal proof. Hadar seemed to
be a full participant in the authoring of this formal proof. She started by stating, “We can
do...if we said all these have an alpha 1, alpha 2” [94] and writing on the worksheet. She then
clarified this and used terminology conforming to the language used in formal definitions —
“alphal” and “that is”.

100 Hadar: That is, there exist scalars such that the sum of this set ({(1,0,0,0),
(2,0,0,0), (2,0,0,0)}) will be equal to zero, even if they (all the scalars)
are not equal to zero.

101 Yaniv: Exactly.

102 Hadar: And then if we add another vector, we can multiply it (the additional
vector) by zero (and the sum of all veetors will still vemain zevo).

7.3.2 The changes in the pair’s routines during this interaction

Yaniv’s initial routine was canonical and would probably have been deemed acceptable and
sufficient by an expert mathematician. After all, his task aligned with the canonical solution
and he used an appropriate procedure from a theorem in an appropriate place. However, when
looked at more closely, Yaniv’s narratives around this routine were relatively thin. He did not
justify why this was an appropriate theorem or why it is true, he just repeated the theorem as
a justification. In answer to Hadar’s question, “are you sure?” [28], he answered, “we add
another vector, this subset is still linearly dependent” [29]. Hadar tried to convince Yaniv
that there can be a counter example and he refuted her claim by restating the theorem, “If we
add, doesn’t matter what we add...these 3 vectors will still be dependent” [37]. This was also
his answer to Hadar’s counterexample. He said, “Then it is still linearly dependent” [41],
without any details or justifications. Thus, Yaniv did not connect the theorem he used to the
definition of linear dependence displayed on the board, nor did he suggest any other methods
of solving this task in response to Hadar’s questions. Hadar continued to question Yaniv,
“How is it linearly dependent?!” [42]. She also suggested using the definition, “Why? If you
find scalars, that not all of them are zero...?” [44]. Following this, Yaniv attempted to
connect his narratives to the definition, which uses scalars, “But it doesn’t matter if it will be
zero, if all the rest ...” [47]. Hadar’s questioning of Yaniv’s initial individual routine
compelled him to bond his canonical routine to the definition familiar to them both by
clarifying and elaborating his original narratives.
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Concerning Hadar, her original routine was non-canonical. During the interaction with Yaniv,
she changed her task to align with Yaniv’s canonical task. Additionally, she modified her
procedure. Her original procedure included cancelling out vectors by multiplying by zero.
Her modified procedure acknowledged the possibility of non-zero scalars. She also reported
comprehension after this interaction, “OK. That’s the idea.” [84] and expressed awareness of
the change she made to her own narratives “Wow! It’s hard to realize this.” [86].

7.3.3 Did Hadar’s routines really change? Examining her performance on the next task

In the above-described transcript, Hadar ultimately agreed that the set {(1,0,0,0), (2,0,0,0),
(3,0,0,0), (0,1,0,0)} is a linearly dependent set. This may indicate that she learned something
new, in the sense that her routines and narratives changed to align more with canonical ones.
However, in the pair’s discussion of the next assertation, it became evident that the situation
was more complex. There, Hadar still used her previous routine, which explored the status of
each vector separately. Not only that, but she also reverted to stating that the set {(1,0,0,0),
(2,0,0,0), (3,0,0,0), (0,1,0,0)} is a linearly independent set.

The context of this surprising turn of events was the pair’s attempts to prove the next
assertation:

3) {u1, Uy..., us}< V isa linearly dependent set, then Span{us, ua,..., us} = Span{u,
us,..., Ue}.

Hadar began their discussion by suggesting that this was true, since “u1 can be expressed as a
combination of uz through ue, So we can take no notice of it”. Yaniv questioned this by asking
if maybe u; was not “the vector that can be ignored”. Hadar answered, “Does there exist such
a vector? If the set is linearly dependent ... can’t each vector be expressed as a linear
combination of the others?” Again, we see Hadar examining properties of single vectors (being
expressed as a linear combination of others) when the property given in the assertation
pertained to the set {Us, Uy, ..., Ug}.

After some discussion about this between Hadar and Yaniv | came to monitor their group.
Hadar asked me, “We are wondering about how a vector can be left out of a linearly dependent
set. Our question is - is it any of the vectors?” I answered, “not necessarily the first or the last,”
and then suggested they try to construct a concrete example of such a set and explore this. After
I left, Yaniv suggested they use the set {(1,0,0,0), (2,0,0,0), (3,0,0,0), (0,1,0,0)}, which they
had discussed for the previous assertation, and pointed to it written on their worksheet. Hadar’s
reaction to this suggestion is in the following excerpt.

220 Hadar: No. but that (the set (1,0,0,0), (2,0,0,0), (3,0,0,0), (0,4,0,0)}) IS not
dependent.

221 Yaniv: Yes. Itis a dependent set.
222 Hadar: Only the first three (vectors) are (Linearly dependent).
223 Yaniv: No, all together they are dependent.

Hadar’s claim in [220] is quite surprising, given that she had just authored the opposite
narrative during the pair’s discussion of assertation 2. Additionally, her justification of this
claim in [222] still uses her initial idiosyncratic procedure, authored before the discussion
with Yaniv. The above lines show that, at least for Hadar, the discussion in pairs was not
productive for changing her idiosyncratic ways of treating linear dependence.
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The collaborative learning episode did not advance Hadar’s learning. Studies have suggested
that social interactions and ineffectual communication can hinder collaborative learning
(Ben-Zvi & Sfard, 2007; Sfard & Kieran, 2001). Thus, next I turn to examine the possibility
that Hadar’s lack of advancement was due to ineffectual communication, as suggested by
these studies.

7.4  Pattern of Interpersonal Communication

To understand whether the problems in advancing Hadar’s discourse were due to ineffective
interpersonal communication, I examined the pair’s mutual engagement through their use of
the different channels of communication available. These were analyzed by first segmenting
the transcript of their discussion about the task into mathematical narratives. This
segmentation allowed the examination of how each pair listened to each other’s mathematical
ideas - if they were attending to the mathematical content of each other’s narratives and to
what extent they were contributing to the discussion.

The channels of communication between Hadar and Yaniv were labelled and colored
according to the following table.

Private

Interpersonal Reactive

Interpersonal Proactive

In Section 7.3.1, above, | showed an excerpt where Hadar suggested that a linearly
independent set can have a linearly dependent subset. Yaniv did not agree that this is
possible, and Hadar attempted to explain and justify her claim. | now exemplify the
interpersonal communication between Hadar and Yaniv on this same segment.

Speaker | Verbal NonVerbal | Hadar’s Yaniv’s
Channel Channel
39 | Hadar It’s possible (that a Reactive
linearly independent Interpersonal
set would have a
linearly dependent
subset)
40 We can bring (as an Writing Proactive

exawple of a linen rly example on | Interpersonal
independent set) upas | PAPer
(1,0,0,0), and u2 as
(2,0,0,0), us as
(3,0,0,0) and us as
(0,1,0,0)
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41 | Yaniv Then it (the set of 4 Pointing to Reactive
dependent
42 | Hadar How can it ((0,1,0,0)) Reactive
be linearly dependent? Interpersonal
43 | Yaniv No, not it ((0,1,0,0)) Reactive
by itself, Interpersonal
44 | Yaniv But the entire set Looking at Proactive
together Hadar Interpersonal
45 | Hadar Why? Reactive
Interpersonal
46 | Hadar If you find scalars, that | Pointing to | Proactive
not all of them are zero | paper Interpersonal
47 | Yaniv Yes. Reactive
Interpersonal
48 | Yaniv But it doesn’t matter if Proactive
he will be zero, if all Interpersonal
the rest uh...if there is
one ...

Table 7-1 Classification of Hadar's and Yaniv's channels of communication

Hadar’s reactions to Yaniv’s statements ([39], [42], [45]) were classified as using the
interpersonal reactive channel, since these utterances were a reaction to Yaniv’s reasoning
and 1deas. Hadar also authored narratives of her own and asked for Yaniv’s input about these
narratives in the proactive interpersonal channel ([40], [46]), where her utterances were
aimed at getting a reaction from Yaniv. He responded to Hadar’s questions in the reactive
interpersonal channel ([41], [43], [47]) by relating directly to the mathematical content of
Hadar’s narrative. Yaniv then responded in the reactive interpersonal channel and asked for a
response to another claim in the proactive interpersonal channel ([44], [48]).

This analysis shows that both Hadar and Yaniv attended to each other’s mathematical
narratives and justified their disagreement by relating to the content of the other’s claims.
Hadar did not follow Yaniv’s claims blindly, rather she authored independent narratives of
her own to which Yaniv listened and the pair discussed. For example, Hadar suggested in
[40] a set of vectors and the pair discussed this set’s properties. This pattern of
communication was repeated throughout the interaction. The coding of their entire
interaction, in Appendix C-2, Section 10.3.2, displays that most of the pair’s discussion was
in the interpersonal channel. Additionally, almost each narrative of Hadar and Yaniv was
split into a reactive narrative followed by a proactive narrative. That is, first each of the pair
responded to the other’s utterance and then stated something new, asking for a reaction.

To conclude, this analysis showed that the initial impression of egalitarian interaction was
justified. Moreover, it shows that the interaction was full of proactive and reactive
communications on the part of both of the parties. There was minimal use of the private
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channel in Hadar and Yaniv’s discussion, thus they had relatively full access to each other’s
routines for solving the task, they were both engaged in the discussion, and they both
considered the others’ ideas as worthy of consideration. Thus, the communication supported
collaborative learning and it is difficult to blame Hadar’s ineffective learning on any
interactional features of their discussion.

7.5 Hadar and Yaniv’s objectification processes

In this section | turn my analytical gaze to the more tacit rules, or metarules of the
mathematics underlying this task, to examine whether those could explain the ineffectiveness
of Hadar’s learning. In Chapter 5, I showed that embedded in the task Hadar and Yaniv were
working on is the mathematical object “set of vectors”. This object can be realized in four
subdiscourses — vectors, sets, matrices and vector spaces. The analysis in Chapter 5 pointed
to the fact that solving this task necessitates using at least two of the subdiscourses - vectors
and sets - and connecting between them. Therefore, to understand the roots of the persistence
of Hadar’s idiosyncratic and non-canonical narratives | next turn to the subdiscourses Hadar
and Yaniv used in their solution process. | do so by mapping their discourse on DDMTSs,
similar to those constructed for implementations of this task in Chapter 6.

The DMT constructed in Chapter 5, on which the DDMT in Chapter 6 was based, was for the
object “set of linearly independent vectors”. A set of linearly dependent vectors is a set which
is not linearly independent, and thus uses the same subdiscourses, as was explained in
Chapter 5. The students’ narratives were mapped onto a DDMT, as was done for the whole
class discussion in Chapter 6, where the method is described in detail. Yaniv’s narrative
pertained to a set of linearly dependent vectors, and so this was used as the node of the
DDMT mapping his narratives. Hadar’s narratives pertained to both linearly dependent
vectors and to linearly independent vectors, and so two separate DDMTs were constructed for
her narratives.

7.5.1 Yaniv's DDMT

SET OF LINEARLY
DEPENDENT VECTORS

( Sets } Matrices Vector space
/ |

vl is a linear combination
of v2 and v3

Set is linearly dependent

If all the scalars used in

_ 0 is in the set
> o;v;=0 are zero

If avy+ Bv,+ yv3=0
Thena=p=y=0 Set with a linearly

dependent subset is
linearly dependent

Figure 7-1 Yaniv's DDMT for set of linearly dependent vectors
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As can be seen in Figure 7-1, Yaniv authored realizations in the subdiscourse of vectors and
in the subdiscourse of sets. He also authored links connecting between these subdiscourses.
For example, Yaniv answered a suggestion of Hadar’s saying, “But it doesn’t matter (7or the
set’s linear dependence) Wit (the scalar mudtiplying ) will be zero, if all the rest (2/21%)”
[47]. By this statement, he connected between a narrative in the subdiscourse of vectors about
the scalars multiplying the vectors in a linear combination with a narrative in the
subdiscourse of sets about the set’s linear dependence. He also said, “If there is one scalar at
least that is different from zero...then it (¢/e set) is (linearlys dependent).” [53]. This narrative

also includes a narrative from the vectors subdiscourse, “there is one scalar at least”, and a
narrative from the set subdiscourse “it (the set) is (Linearly dependent)”. These narratives,

which connect between the subdiscourses, are from within the coalesced discourse of sets of
vectors. Thus, the objects embedded in Yaniv’s narratives are from within this discourse, that
is, the objects Yaniv discussed were “sets of vectors”.

The DDMT showed that Yaniv’s narratives pertain to the mathematical object of a set of
vectors. This is also noticeable in the narratives. When Yaniv discussed the property of linear
dependence of a set he consistently used the singular pronoun it to refer to this object, for
example, “If it is already linearly dependent” [29] and “that means that it is (/inearly

dependent)” [45]. This suggests that he had encapsulated the different vectors into a single

set, and he treated the set of vectors as an object, rather than as only a collection of objects
(vectors). His narratives also referred to sets of vectors as an object with properties, and not
as the result of a procedure. For example, “the set altogether is” [43] and “if zero is in the
set” [70]. Yaniv’s routine, to examine the set for specific subsets, also pertained to the object
“a set of vectors”.

7.5.2 Hadar’'s DDMTs

Hadar authored non-canonical narratives and some of her narratives were authored with
Yaniv’s support and as a result of her interaction with Yaniv. This is noted in the DDMT by
filling in the boxes of these types of narratives in different colors. As explained above, there
are two DDMTs for Hadar — one mapping her narratives pertaining to linear dependence and
one mapping her narratives pertaining to linear independence.
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| |
|
|

If vl v2 v3 are linearly dependent then there

is a linear combination equaling zero | Setis linearly dependent
/ Key:
LrGvict Bt =1 | Set with 2 linearly dependent Authored with
Thena = ‘: y=0 vectors and one linearly Yaniv's support
independent vectors is linearly -
Set with vectors that can be neutralized (in dependent Non-canonical

two different ways) is linearly dependent

|
Sets can be neutralized with some /
non-zero scalars and some zero
scalars

Figure 7-2 Hadar's DDMT for set of linearly dependent vectors

The DDMT of Hadar’s narratives about linearly dependent sets shows that these are mainly
in the subdiscourse of vectors. She authored by herself two narratives in the sets discourse,
including one narrative not connected to any justification, “the set is linearly dependent”. The
other narrative she authored was her “prototype” of linear dependent sets. Hadar said, “3 like
this (v« = (z.0.0,0))” [30] and explained “Three that are dependent with u1. Let’s say here

(the first component of the vector) is 2,3 and 4.” [36]. Thus, Hadar’s narrative was that the
set {(2,0,0,0), (3,0,0,0), (4,0,0,0)} was linearly dependent.

Two of the narratives that appear in the DDMT were authored with Yaniv’s support. This
was shown above in Section 7.3. With this support, Hadar connected between a narrative in
the vector subdiscourse and a narrative in the set subdiscourse. However, the narrative in the
vector subdiscourse was a small modification of her idiosyncratic procedure and did not
herald any major change in her routine. She also authored a non-canonical link between the
subdiscourses, shown in the figure above as a grey line. She said, “(/inear dependence)
means that alphal is equal to alpha 2 is equal to zero, they are all equal to each other and
they are equal to zero” [72]. This is part of the definition of linear independence, and not
linear dependence. Yaniv’s protest confused Hadar, and she said, “We are getting confused
with the definition” [76].
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Figure 7-3 Hadar's DDMT for set of linearly independent vectors

This DDMT displays Hadar’s narratives pertaining to linear independent vectors. In this case,
Hadar authored narratives in both the vector subdiscourse and the sets subdiscourse.
Although there are numerous narratives in the sets discourse, they did not support her use of
this discourse. In this discourse she authored narratives about specific sets of vectors, which
can be considered her “prototypical” dependent set. These sets include elements from the
standard basis, {€1=(1,0,0,0), e2=(0,1,0,0), e3=(0,0,1,0)}. The other narratives she authored in
this subdiscourse were not canonical and could not support her objectification process.

In this DDMT Hadar’s idiosyncratic procedure for determining if a vector is linearly
independent is apparent in the vector subdiscourse. Yaniv supported her authoring an
additional narrative in the vector subdiscourse. During the discussion she said, “That means
that alpha 1 is equal to alpha 2 is equal to zero, they are all equal to each other and they are
equal to zero” [72]. Yaniv told her that this means linearly independent, and she agreed by
repeating his words, “It’s linearly independent” [77]. The link between the two subdiscourses
was endorsed by Hadar, but Yaniv authored it.

The two DDMTSs show that the interaction with Yaniv supported Hadar authoring narratives
in the vector subdiscourse and helped her author new narratives in both the vector
subdiscourse and the set subdiscourse. Many of the narratives she authored in the sets
subdiscourse were not canonical. She had not yet objectified the set of vectors objects, thus
this subdiscourse had no meaning for her and she interpreted the narratives through the
collection of vectors object. She also authored links between the subdiscourses. However,
these links were with her idiosyncratic procedure and not with more general narratives. In
addition, all the links to the sets subdiscourse were to the narrative “the set is in/dependent”.
This is a narrative she seems to be repeating ritually.

To summarize, Hadar’s narratives were from within the subdiscourses of vectors and sets,
and not from the coalesced discourse of sets of vectors. The objects embedded in Hadar’s
routine were individual vectors, whereas the narrative she was attempting to author pertained
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to sets of vectors. This could be seen, for example, in her statement that “The three (vectors)
are (linearly independent), but the fourth is not (Lonearly independent)” [38]. The set of
vectors object was still not encapsulated in Hadar’s discourse, as seen when she used plural
pronouns to designate the set of vectors, and not singular. This can be seen when she says,
“they are linearly dependent” [32], “we will cancel them out” [52], and “we add to them”
[54]. I conclude from this analysis that Hadar had not yet objectified the mathematical object
of “sets of vectors”. Hadar’s incomplete objectification process meant that she was using
objects from the subdiscourses of sets of vectors, and the metarules pertaining to the objects
of sets of vectors discourse had no meaning for her.

7.6 Hadar and Yaniv’s collaborative learning process

Yaniv’s objectification process was significantly more advanced, in relation to Hadar, as far
as the object “set of vectors” was concerned. Yet this did not mean that Yaniv did not have
something to learn from the discussion with Hadar. On the contrary, their collaborative
discussion compelled Yaniv to articulate his justifications, to connect theorems he already
had endorsed to the definition and to clarify to himself the manipulations used in proofs about
linear dependence. He authored new object-level narratives within subdiscourses in an
endogenous development, or object-level learning. He also practiced object related metarules
and developed new cross-subdiscourse narratives in horizontal exogeneous development, or
meta-level learning. I hypothesize that Yaniv’s location on the trajectory of objectification
supported his learning on all levels and allowed him to meaningfully use the opportunity for
explorative participation afforded to him in the workshop.

In contrast, Hadar was much further back in the process of objectification of the set of vectors
object, and her narratives pertained to single vectors. She did author, with the support of
Yaniv, new narratives within subdiscourses and authored more realizations. Thus, there was
some object-level learning for Hadar. However, most of the links between subdiscourses she
authored were non-canonical. The discussion between Hadar and Yaniv was ineffective in
dispelling the non-canonical metarule about linear dependence being a property of single
vectors that was repeatedly authored by Hadar. Although Yaniv protested against it, and once
even articulated the difference in their mathematical objects, saying, “No, it (t/¢ vector) isn't
(Unearly dependent) — but the set altogether is” [43]. However, his protests were not noticed

by Hadar. Moreover, the statement “the set altogether is”” had no meaning in her discourse,
since “the set” for her was only a collection of objects, without properties of its own. I
suggest that this was the reason she did not attend to Yaniv’s protests and continued to justify
her claims using her idiosyncratic procedure. Thus, despite the opportunities for meta-level
learning afforded to Hadar, she could not take advantage of them.

7.7 Alice and Ben — a pair with unequal participation

In the previous sections | examined the collaborative learning session of a pair of students
with an egalitarian interaction. There were also groups of students where the interaction was
unequal. The obstacles for learning found in Hadar and Yaniv’s case, which was
characterized by relatively egalitarian communicational patterns led me to hypothesize that
much more serious obstacles would be found in a non-egalitarian couple. On the other hand,
it could be that non-egalitarian pairs, where one student functioned as the expert and the other
as novice (or follower) would have less communicational problems, and the group work
would be beneficial there (at least for the novice). | turn to examine these possibilities in the
next section.
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As described more fully in the methods section, the initial viewing of all the recorded pairs
yielded 6 recorded groups where one of the students acted as an expert and as a leader, and
the other students acted as a follower. Group S3-2 (Workshop S3, Group 2) were selected for
deeper analysis.
Alice and Ben, a mixed-gender pair who were previously acquainted, were two North
American first year students in the Institute’s International Mechanical Engineering program.
They were sitting next to each other and worked together as a pair in a workshop about linear
dependence. One of the reasons for choosing their collaborative session for closer analysis
was based on the notes pertaining to the two students in my teaching journal. There, | wrote
that after working together, the pair’s presentation included Alice stating she did not agree to
what she was presenting. Alice volunteered to present her and Ben’s solution on the board to
the class saying, “l can try (to present our solution), but it’s going to be tough”. She took
Ben’s notebook and started to write a proof on the board, but then said, “How do we know
this? I don’t agree with what’s written here”. Later she told me that she did not feel equally
productive to Ben in this session. These statements of Alice’s gave a first indication that the
communication between the pair was not effective and that their seemingly jointly authored
mathematical narrative was not endorsed by Alice.
Alice and Ben were working on the same task as Hadar and Yaniv.

Task: True or false: Let V be a vector space. {us, uz, uz}< V is a linearly dependent

set and us € V then the set {u1, uz, us, us} is linearly dependent.

In contrast to Hadar and Yaniv, Alice and Ben did not author individual proofs that could be
re-constructed from their initial discussion. The pair’s peer-learning phase led to a non-
canonical proof that was mostly authored by Ben. I first examine the patterns of
communication of this pair to confirm the initial determination of an unequal interaction.

7.7.1 Channels of communication

This analysis was carried out in the same manner as the analysis of the channels of
communication between Hadar and Yaniv and is exemplified on the following excerpt. The
channels were labelled and colored according to the following table. In Appendix D, Section
10.4, the full analyzed transcript is available.

Private

Interpersonal Reactive

Interpersonal Proactive

The pair read the task to themselves. Ben looked only at the paper which was in front of him
and started talking out loud using an instructive tone of voice.

Speaker | Verbal NonVerbal | Ben’s Alice’s
channel
Channel
Ben Is there a vector that Looking Private
11 you can add to this set | down
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({u1, u2, uz}) that will
uhh...ummm..uhh..
Ben The question is —it’sa | Looking Private
combination of these down
12 ummm
vectors...ummm...wait
a second.
Ben Umm... It (a vector) is | Looking Private
13 a combination. down
Alice I don’t know if it’s (the | Sitsup Private
14 nssertation) always suddenly
true.
Ben Yeah. It (the Matter of Interpersonal
15 nssevtation) is true. It | fact. _
is true. Reactive
Ben If this ({uz, U2, us}) is Looking Private
linearly dependent then | down
16 this ({u, uz, us, us}) is
linearly dependent
Alice But what if we add... Interpersonal
17 Proactive
Ben Forget it, it doesn’t Interpersonal
18 matter — it’s true.
Reactive

Table 7-2 Classification of Alice and Ben's channels of communication

In [11] Ben restated the question asking if there could be a counter example. He wondered if
there could exist a vector us such that the set ({u1, uz, us, us}) has some property. In [12] he
questioned if one of the vectors is a linear combination of the others, which is mathematically
equivalent to the set being linearly dependent. However, he mentioned a specific vector “it’s”
and not “one of the vectors”. He answered himself in [13] “it is”. This is an outline of the

proof he authored in more detail later, which is presented in the next section.

Ben did not ask Alice if she agreed with him or if she thought differently. Neither did he ask
her for corroboration of any of his statements. Thus, Ben was using the private
communication channel to elicit the initial narratives about the task. Initially, Alice was quiet,
listening to Ben. Her first questioning of Ben’s statements came in [14]. This sitting up may
signal that she had an idea of her own for how to solve the task, and her stating that she was
not sure it was true may hint that she had an idea of an example for which the assertation did
not hold. However, this idea of an example, if ever articulated to herself, was kept in her
private channel. Ben reacted to her interruption of his thoughts in the reactive interpersonal
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channel. In [15] he dismissed her questioning, without asking for any details of why she was
objecting. He reaffirmed his statements, by simply restating the assertation, “If this ({u1, uz,
us}) is linearly dependent then this ({u, uz, us, us}) is linearly dependent” [16]. Again, his
reasoning for the truth of this assertation was kept in the private channel, and again he did not
ask Alice for any input.

The classification described above was carried out for all of Alice and Ben’s discussion and
showed large chunks where Ben’s utterances were in the private channel, and he was focused
on his own reasoning and ideas. Ben used the interpersonal channel almost only when
responding to direct questions by Alice and requests by her for corroboration of her claims.
Alice referred questions to Ben, asked him to arbitrate if a statement was correct
mathematically. Ben asked Alice to “write it neatly”, whereupon she restated his proof and
turned to him to corroborate her statements using the interpersonal proactive channel.
However, very few of Alice’s statements are in the interpersonal reactive channel, since there
was never anything for her to react to. In addition, except once at the beginning, Alice did not
present any of her own ideas or reasoning. Ben’s answer to her idea was to brush off her idea,
without even hearing it. After this, Alice did not suggest any more of her ideas.

The few utterances of Alice that were in the interpersonal reactive channel were in places
where Alice responded to a statement made by Ben. These include when Ben asked Alice
questions in response to her questioning of his proof. Alice asked, “why?”” and as part of his
explanation to her, he waited for an affirmative response to his statements. There are also two
places that Ben turned to Alice and asked her for corroboration of his statement. These are in
the middle of chunks of Ben communicating in the private channel. There, he turned to Alice
and asked for corroboration. In the first he waited until she nodded, and in the second he
waited for her to respond affirmatively. He was satisfied with her response, even though she
did not respond directly to his questions.

To conclude, the channels of communication analysis displayed that Ben was mostly
communicating in the private channel. Alice, after once attempting to communicate in the
private channel when trying to think up a counterexample to Ben’s claim that the assertation
was always true, communicated mostly in the proactive interpersonal channel by responding
to his statements. The communication between the pair was glaringly unequal. Ben adopted
the role of expert and leader, and Alice aligned herself with this.

7.7.2 Ben’s DDMT

In contrast to Hadar and Yaniv, who arrived at a canonical proof for this task, Alice and
Ben’s discussion led to a non-canonical proof that was mostly authored by Ben. Alice hardly
contributed to the pair’s solution, and thus it is not possible to examine her mathematizing. |
examined Ben’s mathematical narratives, focusing on the subdiscourses that he used. These
narratives are displayed on a DDMT in Figure 7-4, below.
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The DDMT above shows that most of Ben’s narratives were in the vector subdiscourse. Ben
also authored a single narrative in the sets subdiscourse, “the set is linearly dependent” and
linked it to narratives in the vector subdiscourse.

The DDMT also displays that Ben authored a single narrative in the vector space discourse.
Towards the end of the pair’s discussion, after Alice had restated Ben’s proof and Ben
confirmed that she did it correctly, Alice kept repeating “why?” and “I don’t understand
why?”. After multiple requests, Ben attempted to answer Alice’s not well-defined question
with a narrative in the vector space discourse about the necessity of a linear independent
vector to be able to “span all the vectors”. He did not connect this to any other subdiscourses,
and it did not satisfy Alice, who said, “I agree with you, but I don’t understand why.” [115].
Ben finally told Alice to ask me, and that shut down the discussion. This single use of a
subdiscourse, unconnected to the other subdiscourses, did not advance the pair’s discussion.

7.7.3 Ben’s mathematical routine for solving the task

| now examine Ben’s narratives through his use of the vectors subdiscourse. In this
subdiscourse there is meaning to vectors, to algebraic manipulations of vectors and to linear
combinations of vectors. However, scalars have meaning in this discourse only as part of
algebraic manipulations, and not as a set of scalars used in linear combinations. In the
coalesced discourse of “set of vectors” the given “{u1, Uz, U3} is a linearly dependent set” is
the same as stating “there exists a set of three scalars, {a, B, v}, not all of them zero, such that
a-Ur+ B-u2+ y-uz3 = 0”. In the vectors subdiscourse a set of scalars with properties of the set
(not all zero) has no meaning. Ben formed narratives using scalars as part of the narratives as
arbitrary variables, without tending to their properties in the set of vectors. This can be seen
in Ben’s following narratives.

Ben started the proof by translating the given, “{u1, Uz, U3} is a linearly dependent set” to the
narrative that there exists a linear combination of the three vectors, a-uy + B-uz+ y-us. He
constructed this linear combination, implicitly equated it to zero and used algebraic
manipulation that led to the statement:

D —-—auy=pu+y-us
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Then Ben stated, “One of these is not zero” [23] and “one of the coefficients is not zero” [24]
and continued his proof by assuming that o # 0, as can be seen since he divided the equality
by a, “beta over alpha, gamma over alpha” [33], to arrive at the claim:

B Y

INuy = —u, + —
(D uy —au2+—au3

In the coalesced discourse of sets of vectors, the set of scalars used in the non-trivial linear
combination has a non-zero element. Ben probably interpreted this in the vectors
subdiscourse as the scalar multiplying a certain vector (o multiplying u;) is not zero.
Ben next changed narrative (11) to:

(D) u; = _ﬂauz + —Laul
This change was justified by him as “I’ll change the 3 to 1. It’s usually the last one” [35].
Changing the order of the vectors, without changing the scalars, is consistent with his use of
the scalars as arbitrary variables which can change places and roles.

Ben then added a fourth vector to the linear combination he had constructed saying, “if you
add u4... then...we’re going to have” [45] and authored the statement:
MNau,+L-u,+y-u;+0-u,

He then said, “now we want that to be equal to the zero vector in order to check whether
they 're dependent or independent” [46]. Ben’s procedure for checking if vectors are linearly
dependent was to equate the linear combination constructed to zero and use algebraic
manipulations to show that one vector can be written as a linear combination of the others.

He then reiterated, “we know that alpha is not equal to zero” [48], as within the vectors
subdiscourse this is the determined value of the alpha from his previously authored narrative.
Using o # 0 and again switching places between the vectors u1 and us, justifying it by
“instead of 3, cause” [53] he authored:

B 14 6
V —_—— —_—— —_—— o
W) p Uy p U p Uy = U3
Ben next claimed, “This shows that these (fowr vectors) are a combination of the previous
ones” [99], and thus it is linearly dependent, because “a linearly dependent set has a vector

that is a combination of the others” [101]. That is, he claimed he had proved the truth of the
assertation.

To summarize, Ben’s authored proof used a routine that was within the vectors subdiscourse.
Alice’s minimal attempts at voicing her dissatisfaction with Ben’s set of claims, for example,
asking, “why does that (tse fowr vectors are a linear combination equaling zero) matter?”
[100] and “why does that (¢/¢ fowr vectors are a linear combination) come from the
definition?” [104], were brushed off by Ben, “It does” [105], without providing any
justification. These communication patterns of the pair which constrained any changes was
also exemplified in the analysis of the patterns of communication, where Alice’s suggestion
of an object level narrative was ignored.

7.7.4 Ben’s objectification process

Ben authored a proof within the vectors subdiscourse, while the property he was attempting
to prove, that the set {us, uz, us, us} is a linearly dependent set, pertains to a set of vectors. In
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this section, Ben’s location on the trajectory of objectifying the “set of vectors” that was at
the heart of this task is examined.

Ben used properties of vectors and manipulations on vectors to author his narratives. He
constructed linear combinations, suchas (IV) a-u; + B -u, + vy -uz + 6 - uy, by
manipulating vectors, within the vectors subdiscourse. Ben added a vector to the linear
combination of the three vectors, thereby constructing a linear combination of the four
vectors, without considering the sets - a set with 3 elements and a set with 4 elements - as
different objects. This can also be seen in the excerpt below, where he communicated in the
private channel.

30 Ben: Do we even need to do it this way? I don’t even know... Fine.

31 Ben: Beta u2 plus gamma u3. Now ul is equal to... do we even need to do it this
way? [ don’t even know... fine... beta over alpha gamma over
alpha...(looking at paper)

32 Ben:  So, we have represented the ul vector, in terms of a combination of the
other vectors. (Looking at Alice)

33 Ben: It shouldn’t be 1 it should be three, I’ll change the 3 to 1. It’s usually the
last one. (Changing on paper)

Ben’s statements mostly related to describing manipulations of vectors. In [31] he described
the construction of a linear combination and in [33] he used a procedure of changing the
indices to suit what he deemed the expression should look like. His explanation aimed at
Alice in [32] also describes a procedure, with the task unbonded to the original task situation
of proving linear dependence.

Additionally, Ben’s routines were not goal oriented, but rather procedure-oriented (or ritual).
He kept trying different procedures, as can be seen in the excerpt. He used the procedure of
constructing a linear combination and isolating a vector with algebraic manipulations in [31]
and explains this procedure in [32]. In [33] he uses a procedure of switching between vectors.
In addition, Ben’s question, “do we need to do it this way? ... I don’t know...fine.” [30] also
indicates that he performed the algebraic manipulations for no specific goal.

Although Ben had constructed a link between the narrative “one vector is a linear
combination of the others™ in the vectors subdiscourse and “the set is linearly dependent” in
the sets subdiscourse, he interpreted this through the vector subdiscourse. In the coalesced
discourse this link is interpreted that there exists a vector which is a linear combination of the
other vectors, but there is no way to determine which vector. Ben’s narratives that used this
link were based on a specific vector being a linear combination of the others.

To conclude, Ben’s narratives pertained to the vector object, and not the “set of vectors”
object, his narratives were mostly within the subdiscourse of vectors and his routine was not
goal oriented, but rather a list of procedures. This leads me to suggest that he had not yet
completed the objectification process for a set of vectors.
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7.8 Summary of Chapter

This chapter examined the learning processes during small group discussions, where the
students worked collaboratively independent from the instructor. The four students examined
in this section exhibit different learning processes in a collaborative setting.

Yaniv’s narratives and metarules were canonical and his objectification of the sets of vectors
objects was advanced. His participation in a collaborative discussion allowed him to bond his
narratives to the definition, to articulate more clearly his narratives and to construct examples
and mathematical narratives justifying his claims. The interaction with Hadar supported his
authoring narratives in the coalesced discourse and afforded him opportunities for explorative
participation in that discourse.

Hadar had just begun the objectification process of the set of vectors object. Thus, she used
metarules which were canonical in the subdiscourse of vectors, but were not canonical in the
new coalesced discourse. Her participation in the collaborative discussion advanced her
object-level narratives. She authored object-level narratives, examples and justifications.
However, this discussion did not support the exposure of her non-canonical metarule. Thus,
although the collaborative discussion advanced her object-level narratives, it did not support
the meta-level shift necessary for her.

Ben’s objectification process of the set of vectors object was also very preliminary, and thus
he authored narratives almost exclusively in the vector subdiscourse. He participated in a
peer discussion, however the discussion was not collaborative. He brushed off any challenges
to his mathematical narratives, and thus did not confront alternative narratives that may have
proved his ideas wrong. Moreover, he was not required (or did not feel obliged) to justify any
of his statements and thus none of his erroneous claims were exposed. The discussion did not
advance him at all.

Alice was not even given a chance to suggest any of her mathematical narratives. She was not
given the opportunity to participate in a discussion. The peer discussion was not collaborative
and did not support advancing her narratives at all.

The four students struggled independently (from an expert) with a task that had the potential
for meta-level learning, as shown in Chapter 5. The main potential included object related
meta-level learning by authoring narratives in the coalesced discourse, which consists of
connecting between object level narratives in the separate sub-discourses available to the
students. The task also had the potential for enacting executive meta-rules, such as how to
prove or refute assertations. Hadar and Yaniv had difficulty with the object related metarule
of linear dependence as a property of sets. Alice and Ben had difficulty with the executive
meta-rule of circular logic. This difficulty with metarules occurred in both pairs of students,
including the pair whose interaction was egalitarian.

The meta-level learning of connecting between object-level narratives necessitates familiarity
with the object-level narratives. The tasks also had the potential for this object-level learning.
The pair of students whose communicational patterns were more egalitarian took up this
opportunity and advanced their object-level narratives. In contrast, the pair of students with
unequal communicational patterns had difficulties with the object-level also. The students
utilized the opportunity for object-level learning when the communication between them
supported this. Yet, in both cases, the metarules were not sufficiently exposed and thus
hindered advancement.
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8 Discussion

8.1 Summary and connection to literature

There were two main goals of this study. One goal was to adapt instructional practices,
shown to promote discourse-rich explorative participation to a university linear algebra
course to support and encourage student participation and learning. The second goal was to
explore an implementation of the above adaptation to better understand the processes of
learning in an undergraduate classroom in terms of the content and the social interactions.

Active, student-centered meaningful teaching practices are discussed in many studies in
elementary and secondary mathematical classrooms (e.g. Michaels et al., 2008; Schoenfeld,
2014; Smith & Stein, 2011) and in tertiary mathematical classrooms (e.g. Biggs & Tang,
2007; Hershkowitz et al., 2022; Laursen & Rasmussen, 2019; Legrand, 2001; Talbert, 2014).
More instructors are aware of the importance of tertiary student engagement in meaningful
mathematics, student collaboration for sensemaking, instructor inquiry into student thinking
and equitable instructional practice (Laursen & Rasmussen, 2019). This study adds to this
body of literature and uses the commognitive framework (Sfard, 2008) to examine the
learning processes involved in various aspects of university level mathematics (Nardi et al.,
2014).

Adapting instructional practices included designing tasks aimed at promoting discourse-rich
explorative participation in tertiary mathematics courses. A necessary, but not necessarily
sufficient, condition for productive discussions is providing learners with tasks that support
this type of setting (Cooper & Lavie, 2021). The tasks should expand students’ mathematical
experiences and invite students to deeper engagement (Koichu & Zazkis, 2021). | adapted the
RTA tool (Weingarden et al., 2019) to design a tool to examine the designed tasks, the DMT.
Using this, I found the mathematical objects embedded in the designed tasks, these objects’
realizations in multiple subdiscourses, and the opportunities afforded by the tasks for saming
between these realizations.

In Chapter 5, by analyzing the DMTs drawn for the designed tasks, | showed that the tasks
had the potential to encourage explorative participation and to support both object-level
learning and meta-level learning. The object-level learning includes the opportunities for
authoring multiple realizations for mathematical objects and for saming between realizations
within a subdiscourse. That is, the tasks afford opportunities for authoring narratives within a
subdiscourse. Yet, the richness of the designed task is displayed by the DMT analysis of the
potential for meta-level learning embedded in the tasks. The tasks afford meaningful, rich
opportunities for saming realizations of linear algebra objects in different subdiscourses and
for traversing the subdiscourses involved in this domain. These opportunities support the
unification of different subdiscourses and the coalescing of a new discourse. Therefore, the
tasks designed for the workshops had the potential for supporting explorative participation
due to their capacity to provoke discussions, including compelling students to author
realizations and links and providing the instructor with opportunities for highlighting
unfamiliar links.

The DMT tool offers an operational definition of the potential of a task to support explorative
participation. This connects to Tekkumru-Kisa and colleauges’ (2020) definition of the

potential of a task as the cognitive demand embedded in a task. Their definition is interwoven
with the task’s implementation by a teacher and how it is perceived by students. They suggest
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that the teacher needs to facilitate the use of the task and that the students need to have
experience in solving this type of tasks in order that the cognitive demand of the task be
maintained in all its phases. In contrast, the commognitive DMT tool examines the potential
of a task independent of the context in which it will be used. This allows examining tasks
before they are implemented in a classroom setting and supports choosing appropriate tasks
for use in classrooms or textbooks.

It is also important to examine the tasks independent of the context to ensure that they can
support a rich discussion. In Chapter 5 | described a commaognitive analysis of possible
solutions which showed that these tasks included impasses, where the student had no
available routines to continue within a single subdiscourse. | showed that the solutions of
tasks which support rich discussion include multiple discourses. There are many tasks that
support learning, but only within a single discourse. For example, a task that asks for which
values of a parameter does a given system, including a parameter, have a single solution,
have infinite solutions and has no solutions. This task supports authoring realizations and
practicing procedures in the matrix subdiscourse. However, it does not support the use of
multiple discourses, since it can be solved completely within that discourse. Weingarden and
colleagues (2019) examined classroom discussions for links authored between subdiscourses
to assess explorative participation in classrooms. If a task did not have the potential for links
between subdiscourses, there would be no possibility of them being authored in a classroom
discussion, since a discussion facilitated by the teacher cannot include links if the potential
for them does not exist. Weingarden and colleagues assumed that such links can be authored
when solving the task. In this study, | did not take this assumption for granted, since one of
my goals was to design the tasks and understand to what extent these indeed offer
opportunities for explorative participation. | thus examined the opportunities for linking
available in a task, independent of the discussion facilitated by the teacher. This demanded an
extension of the methodology for constructing RTAs, as explained by Weingarden and her
colleagues (2019). The DMT extended the tool to map families of objects, unlike the RTA
and realization trees which use single objects as nodes. Additionally, the DMT maps the
possible discourses and the links between the discourses and does not focus on the specific
realizations nor on the links within discourses. Finally, the DMT maps a priori, before a
discussion, what potential the task includes, whereas the RTA maps a discussion based on
what was mentioned a posteriori.

This study adds to Cooper and Lavie’s (2021) examination of tasks used in a lesson including
explorative participation. They describe tasks that include interdiscursive use of routines and
visual mediators and explain that these tasks support the students’ use of a new discourse, by
allowing them to draw on their precedent learners’ space and the new discourse. This study
adds to this and suggests that interdiscursive tasks also support linking between two
subdiscourses and the use of the new, coalesced discourse. That is, interdiscursivity of a task
has two facets. The first one, as Cooper and Lavie described, supports introducing students to
a new, unfamiliar discourse. The second one, as described in this study, supports the
coalescence of two subdiscourses into a new discourse. That is, using familiar subdiscourses
to author a narrative in both. Therefore, these tasks can be used for both pedagogical aims —
introducing a new discourse and for coalescing subdiscourses.

To sum up, the DMT analysis of the tasks showed that, irrespective of the context and the
implementation, the tasks have the potential for both object-level learning and meta-level
learning and for encouraging explorative participation. The meta-level learning embedded in

92



the tasks includes authoring and practicing object-related metarules. This analysis also
supported examining specific characteristics of these tasks, such as interdiscursivity and the
inclusion of impasses.

In the second chapter of the findings (Chapter 6) | examined to what extent were the
opportunities afforded by the designed tasks taken up in implemented workshops. For this, I
expanded the DMT tool to a DDMT (Discussion Discourse Mapping Tree). My goal for
mapping the lessons was to examine if there were realizations from within different
discourses and if connections between these discourses were authored during
implementations of the tasks examined in Chapter 5. The DDMT tool was designed to map
subdiscourses involved in the discussions and not the specific realizations that were
mentioned within each subdiscourse. While the specific realizations and the object-level
narratives, from within a specific subdiscourse, are an integral part of the meta-level learning,
they were not the focus of this analysis. Thus, the DDMT first utilized the DMT’s a priori
analysis of the subdiscourses available for the objects embedded in the task. The DDMT next
utilized a posteriori analysis to draw only the realizations mentioned in class. The
construction of the DDMT in this manner allowed me to map the subdiscourses which were
mentioned in a discussion, which connections were authored during the discussion and who
authored them. This type of analysis aligns with didactical engineering methods (Artigue,
1994) which use a priori analysis and a posteriori analysis to identify crucial phenomena and
then productively implement theoretical approaches regarding this phenomena (Artigue,
2009). Artigue posits that didactical engineering methods can establish effective connections
between researchers and teachers to scale up developments and disseminate pedagogical
suggestions. Thus, the DMT and DDMT tools, used for research and development, might
avail in the next crucial step in this project — scaling up and disseminating the developed
teaching practices.

The DDMT analysis presented in Chapter 6 found that, in most cases, the implementation of
the tasks included support of the students authoring narratives in multiple subdiscourses and
exposing the students to links between these subdiscourses. There were numerous narratives
in the new, coalesced discourse mentioned during the discussions. The students availed
themselves of the opportunities provided. The mapping of the DDMT, based on viewing the
recorded whole class discussions, showed that the discussions included the construction of
multiple links between branches of the DDMT. The links between subdiscourses illustrate the
potential for explorative participation and the potential for meta-level learning embodied in
the workshop, which is authoring narratives in the new, coalesced discourse.

The analysis also showed that the opportunities for meta-level learning in the discussion were
supported by the links authored or instigated by the instructor. The focus of the discussion
was guided to both object-related metarules of linking between subdiscourses and executive
metarules that the students were missing. The instructor also ensured that the discussion
included multiple discourses, and that the discussion did not remain in a single, familiar
subdiscourse. The links between the multiple subdiscourses were mostly either authored by
the instructor or elicited from the students by the instructor’s questions and prompts. The
narratives authored by the instructor ensured that realizations were authored in multiple
discourses and supported links between the discourses. This aligns with Nachlieli and
Elbaum-Cohen’s (2021) suggestion that student-centered instruction might support meta-
level learning when strongly guided by an instructor who can explicate the new rules of the
subsuming discourse and stress the limitations of the old, familiar discourse.
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Another finding of this analysis was that the construction of links between subdiscourses was
dependent on the students’ familiarity with the narratives within the subdiscourses. This
aligns with the necessity for object-level learning as a necessary precursor to meta-level
learning (Sfard, 2008). Object-level learning, according to Sfard, expands an existing
discourse by extending the vocabulary and producing new endorsed narratives within that
discourse. Meta-level learning is usually related to a change in discourse. Sfard suggests that
the change in discourse involved, that is becoming a participant in a new discourse, hinges on
the capacity for using previously adopted discourses. In other words, participating in a new
discourse is contingent on being familiar with the old discourse. In this study | showed that
when students were not familiar with the old discourse, they did not advance to the new
discourse. This occurred, for example, in the discussion about diagonalizable matrices, which
was focused on procedures from the subdiscourse of eigenvalues. In contrast, when students
were familiar with the old discourse, they were able to author narratives in the new, coalesced
discourse. For example, in the workshop about matrices, the students were familiar with the
old subdiscourses, and the discussion was very focused on linking between these.

Finally, the DDMT analysis of the whole class discussion also brought to the fore that there
was usually a dominant discourse in each workshop. This dominant discourse was that which
was either more familiar to the students or which included familiar procedures. Viewing the
workshops with the lens of the DDMT revealed that the students authored narratives in those
subdiscourses that were more familiar to them and the use of other subdiscourses had to be
actively encouraged by the instructor. Additionally, the DDMT showed that students justified
claims with narratives from that subdiscourse and often reverted back to using that
subdiscourse, even after other, more efficient subdiscourses were introduced into the
discussion. The students needed support to transition to other subdiscourses, which was a
necessary step to connecting between narratives in different subdiscourses. This study
extends Lithner’s (2000) suggested that one of the causes of university students’ difficulties
in solving problems is that they focus only on the limited procedures that they remember. The
limited procedures inhibit students from attempting to explore other approaches and other
solutionss . This study extends this idea of the students’ use of limited procedures, to the
limited use of different subdiscourses. The limited procedures that the students use are
probably the procedures available to them in the dominant subdiscourse. Moreover, Lavie
and colleagues (2019) suggest that people interpret a task situation and thus choose a
procedure within a precedent-search-space (PSS). This study expands that notion and
suggests that the students choose procedures from the discourses which are within their PSS.

The DDMT analysis of the whole class discussions demonstrated various aspects of the
students’ participation in mathematical discussions. However, the main part of the students’
independent exploration and struggle with the tasks took place in the collaborative learning
phase of the workshops. During these small group discussions, the students worked
independently from the instructor. Thus, | examined the learning opportunities offered to the
students in the small group learning sessions.

The third chapter of the findings (Chapter 7) examined the small group learning sessions,
which employed collaborative learning, to study the learning processes involved with no
expert support. | examined two different types of interactions. The first was a pair of students
with a mostly egalitarian interaction and a seemingly productive collaborative learning
session. In this pair the commognitive analysis revealed that although one of the pair
benefited from the interaction, the other did not. The second pair | examined was
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characterized by a glaringly unequal interaction. In this case, both the object-level learning
and the meta-level learning were impaired. These findings aligns with studies that showed
that unequal student identities of gender, race and the like negatively affect learning
outcomes and collaboration in STEM education at university levels (Carlone & Johnson,
2007; Johnson et al., 2020).

Some evidence from previous research shows that learners’ communication about the
participants in the discussion may hinder their mathematical activity (Heyd-Metzuyanim &
Sfard, 2012). Studying the pair with an unequal interaction showed a peer learning session
with ineffectual communication in which the students did not advance in their mathematics,
errors were ignored and there was no meaningful discussion. The commognitive analysis
showed how the mathematics was hindered in this case, aligning with studies positing that
ineffectual communication in groups might also hinder learning (Nilsson & Ryve, 2010;
Sfard & Kieran, 2001). Studying Hadar and Yaniv, a pair with a mostly egalitarian
interaction, showed, by analyzing the communication channels employed in the pair’s
interaction, that they were communicating coherently. This should support productive small
group learning sessions, which needs coherent communication (Sfard & Kieran, 2001).
However, although one of the learners benefited from the interaction, the other did not even
though this pair was communicating coherently.

Previous studies have shown that a commognitive conflict, where interlocutors think they are
talking about the same thing, yet in fact are using different metarules, can hinder
collaborative learning (Ben-Zvi & Sfard, 2007; Sfard, 2007b, 2008). These previous studies
led me to seek for the roots of Hadar’s ineffective participation in the interaction in the
discursive objects that the pair tended to. | did so with the aid of the analytical tools
developed in Chapters 5 and 6, the DMT and the DDMT, which mapped the main challenges
for the students of the workshop in terms of shifting and linking between subdiscourses. My
analysis revealed that the students were discussing different objects from within different
discourses and did indeed have a commognitive conflict between them. This led to
difficulties in meta-level learning since the implicit metarules were not discussed, as was
described by other literature (Ben-Zvi & Sfard, 2007; Chan & Sfard, 2020; Sfard, 2007b).

The analysis of the mathematical activity of the egalitarian pair showed that while the
collaborative learning episode was successful for object-level learning, it did not support
meta-level learning. This conclusion aligns with former claims, made in the commognitive
literature, that meta-level learning requires the support of an expert attuned to the implicit
metarules that the students need to learn (Nachlieli & Elbaum-Cohen, 2021). Notably, in
most of the previous commognitive studies about obstacles for successful peer interactions
(e.g. Chan & Sfard, 2020; Heyd-Metzuyanim & Sfard, 2012; Sfard & Kieran, 2001) the
interaction was not egalitarian. For example, Sfard and Kieran (2001) describe an interaction
in which Ari, the more knowledgeable partner, does not attend to his partner Gur, who in
order to save face does not persist in any of his questions. This conflation between affective
issues and mathematizing may have led to the conclusion that peer interactions are mostly
hindered by students not listening to each other. However, my analysis of Hadar and Yaniv’s
interaction showed that even when the affective considerations of the interaction were
optimal and supported learning, the implicit metarules of the mathematical discourse were
not exposed.
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The difficulty of exposing metarules in peer interaction is theorized in commognition by the
idea that meta level learning requires, at least in its initial phases, ritual participation. This is
due to students not being able to participate in a discourse about objects with which they are
not yet familiar (Sfard, 2008). However, my analysis of the individual students showed that
some students may arrive at opportunities for meta-level learning more ready than others. 1
found that one of the students, Yaniv, arrived at the workshop having already objectified the
new mathematical object that was pertinent to the task (“set of vectors”). Thus, he was able to
author narratives autonomously in the new coalesced discourse. Yaniv was seemingly on the
cusp of explorative participation and the opportunity offered to him in the workshop
advanced him. On the other hand, the other students, Hadar and Ben, who had not yet
objectified the objects of the new discourse, benefitted only minimally from the opportunities
offered by the discussion, and advanced somewhat their object-level narratives. The
workshops afforded the students the opportunity for both object-level learning and meta-level
learning. The students availed themselves of these opportunities in different degrees,
depending on their different levels of adoption of the new discourse.

The learning opportunities offered to the students in the small group learning sessions
included object-level learning and the opportunity to practice newly adopted metarules. |
found, similar to what was posited by Sfard (2008), that when a student has not yet completed
the objectification process of the objects in the new discourse, their narratives consider
objects from the old, familiar, subsumed subdiscourse. The analysis of one student, Hadar,
showed how the metarules from the new subsuming discourse, about objects from that
discourse, might be used idiosyncratically. Thus, the findings in this study can help to
elaborate the commogpnitive framework by suggesting that the meta-level learning of object
related metarules hinges upon objectification in subsumed discourses. Theoretically, this
study adds to the commognitive theoretical framework by suggesting how the objectification
process, meta-level learning, adopting new coalesced discourses and explorative participation
may be connected.

8.2 Conclusions

Designing learner-centered workshops and examining an implementation of these in a
university setting allowed me to consider the productiveness and suitability of incorporating
these types of non-traditional teaching methods into lectures and tutorials in university
mathematics. | found that the designed workshops afforded opportunities for both object-
level learning and meta-level learning, and specifically, gave the students the opportunity for
explorative participation. This adds to the body of literature describing student centered
teaching practices in tertiary mathematics which can benefit student learning (Griese &
Kallweit, 2017; Ju & Kwon, 2007; Lahdenpera et al., 2019; Laursen et al., 2014; Laursen &
Rasmussen, 2019). The whole class discussions offered the students opportunities for
explorative participation. The examination of specific student’s learning processes in the
small group sessions showed that these did not support learning for all of the students.
Learner-centered teaching in elementary schools have been studied extensively to examine
how to incorporate this tool productively and successfully in mathematics classrooms (Keefer
et al., 2000; Nilsson & Ryve, 2010). The assorted aspects of learner-centered teaching needs
a thorough examination to incorporate it into university mathematical education in a
meaningful and productive manner.
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The first aspect is appropriate tasks. The tasks designed for these workshops had the potential
for supporting explorative participation due to their capacity to provoke discussions,
including compelling students to author realizations and links. This aligns with studies about
important considerations for choosing tasks (e.g. Koichu & Zazkis, 2021; Tekkumru-Kisa et
al., 2020), and extends those studies to an operational discussion of tasks that support
explorative participation.

The next aspect is the instructor’s role. The analysis of the workshops showed that the role of
the instructor was crucial in supporting learning, especially for meta-level learning. This
aligns with Michaels and colleagues (2008) suggestions for moderating meaningful
mathematical discussions and extends the importance of the expert’s support for the
mathematical content, and not only for the socio-mathematical norms.

Another aspect is the mathematical content of the peer learning sessions. The analysis of the
small group discussions showed that while collaborative learning can be productive, it is
important to note what type of learning is required by the students. The peer learning sessions
can be successful for object level learning. However, meta-level learning requires the support
of an expert attuned to the implicit metarules that the students need to learn. Additionally, I
found that successful peer learning was dependent on the compatibility of the trajectory of the
objectification process of the group members. Participating in a peer discussion did not
support the necessary meta-level shifts for students not advanced in the objectification
process. This adds to the literature discussing the drawbacks to inquiry based and discussion-
based teaching, which posit that learning without an expert, in small groups, might be
arbitrary, and not advance toward the curriculum’s goal (e.g. Vithal et al., 1995).

The group dynamics of the peer learning sessions, and specifically the communication
between the group members, also needs to be considered. This study showed a peer learning
session with ineffectual communication in which the students did not advance in their
mathematics, errors were ignored and there was no meaningful discussion. The analysis
showed how the mathematics was hindered in this case, aligning with studies positing that
ineffectual communication in groups might also hinder learning (Nilsson & Ryve, 2010;
Sfard & Kieran, 2001).

To conclude, this study showed that while inquiry-based teaching and collaborative learning
can be productive, it is important to note the task, the instructor’s role, the type of learning
required by the students and the interactions between group members. Thus, lesson design in
learner-centered teaching should be attuned to the difference between object-level learning
and meta-level learning, and the teaching methods should be suited to the type of learning
required.

8.3 Implications
This study has practical, methodological and empirical implications.

First, this project showed the feasibility of discussion-based linear algebra lessons and
provided guiding principles for lesson design and implementation. The lesson plans and tasks
designed and modified for the workshops in this project can be used by other instructors. The
students’ continued attendance at the workshops showed that they were interested and willing
to participate in such workshops, even when it was offered in addition to the other
requirements of the course. In addition, utilizing the insights from this project, tasks can be
developed for other topics in the undergraduate curriculum.
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Methodologically, this project developed a tool for examining the potential of tasks, the
DMT, and a tool for examining the implementation of such tasks, the DDMT. These tools
give an operational method of evaluating tasks by mapping the mathematical objects
embedded in tasks and the available discourses. The operational definition of the potential of
tasks and the operational method of examining this can be used for tasks in other
mathematical topics and in other levels of mathematical education.

Empirically, this study showed the importance of noting the difference in object-level
learning and meta-level learning. The peer learning sessions can be successful for object level
learning. However, meta-level learning requires the support of an expert attuned to the
implicit metarules that the students need to learn. This study also showed that differing levels
of objectification can lead to potential commognitive conflicts among discursants.

8.4 Suggestions for future studies

This study opens up many interesting avenues of study. First, the DMT and DDMT could be
studied as pedagogical tools for examining teaching and learning. The mapping tools
developed for this study could be used to study other topics of university mathematics and
other levels of mathematics education in similar manner. Additionally, the DMT could be
used as a teaching tool in a classroom as a tool to explore mathematical objects. The students
could be asked to draw a DMT for a certain object or an instructor could present a DMT to
help the students visualize the connections between realizations and procedures. There are
many aspects that need to be considered if one chooses to incorporate a DMT into a
classroom discussion. For example, at what point in the students’ learning trajectory should
they be exposed to this tool and who should determine the different branches of the DMT.
These intriguing possibilities need to be studied for suitability, applicability, benefits and
drawbacks.

Another direction that this study opens up is the understanding of mathematical discourses
and subdiscourses in tertiary classroom and the connections that need to be drawn between
them for students to become fluent in these new mathematical discourses. This study mapped
the subdiscourses for several mathematical objects separately. The characteristics of these
discourses and their connections to discourses in other mathematical topics, such as calculus
or differential equations, could be explored.

Finally, this study showed that commognitive conflicts can be due to different levels of
objectification. This needs further study in different contexts, for example in K-12
classrooms, or in other university level mathematics courses. Examining interactions through
the objects being discussed by the discursants might support many new possible avenues of
exploration and understanding.

8.5 Limitations

The findings of this study should be examined with several limitations in mind. First, the
dataset was limited. The study focused on 7 specific tasks from workshops in a linear algebra
course in a specific engineering institute. The workshops were ancillary to the course, and
thus were not limited by mundane considerations, such as a course syllabus and time
constraints. There are many other tasks and learning goals that need to be considered when
designing a course that forms a mandatory part of the undergraduate curriculum. Yet, the
conclusions from this study certainly inform understanding the more general picture of
university mathematics education.
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Another limitation that needs to be considered is the generalizability of the findings to other
mathematical topics. Linear algebra is a mathematical field where the connections between
different subdiscourses are explicitly stated as a goal of the course and there are many objects
with links between them. In contrast, a course about differential equations tends to be more
focused on procedures of finding solutions for systems of differential equations. Tasks in this
type of course might not lend themselves to mapping by DMTSs, nor would DDMTs map a
discussion in this course. Thus, the findings of this study are limited to university courses of a
certain type. However, the main themes of this analysis can be translated to other contexts.
Mapping objects in all mathematical contexts can support exploring the learning processes
and the objectification process that is inherent in learning mathematics at every level.
Similarly, in all mathematical contexts there is a need to differentiate between object-level
learning and meta-level learning.

The examination of the in-class discussions was limited by the participants being selected by
the acceptance process of the institute and had self-selected by choosing to participate in the
workshops. That is, these students were self-motivated to engage in a mathematical
discussion and had successfully completed previous mathematics classes. Thus, the sample of
students studied in this study can certainly not be considered representative of the general
population. Another limitation concerns the analysis of dyadic interactions, which was
applied to only two pairs of students. There could, of course, be many other forms of
interaction in the workshop that my analysis did not capture. Thus, any generalizations made
from them need to be made with much caution.

Finally, the analysis of the whole class discussions focused on the opportunities for
participation that were offered to the students and the narratives to which the student were
exposed. As in all large group learning sessions, this analysis does not infrom us of what
individual students actually learned during these sessions. Additionally, the discourse of the
classroom discussion was not analyzed, and so this study cannot infrom us about the
processes and the teaching-learning interaction that occurred during these discussions.

8.6 Reflections on my role as the instructor in the workshops

In this study I functioned as a participant-observer by moderating the discussion sessions,
teaching regular tutorial session in the course and analyzing the data. Tabach (2011)
describes how the dual role of a researcher and a teacher can enhance both roles, yet one must
be aware that a teacher-researcher’s first responsibility during class is to be a teacher. During
the workshops | focused on the teaching role, yet I unconsciously noted incidents that |
subsequently described in my teaching journal. Thus, the researcher role was also minimally
active during the workshops. The analysis of the recorded data was done in the researcher
role. This enhanced my teaching practices. Stephan and Rasmussen (2002) describe how the
analysis of classroom mathematics influenced their instructional practices. | agree with them
that it sharpened my awareness of aspects of the theoretical approach and attention to
opportunities for fostering learning. Reflection on significant events while using learner-
centered methods in university mathematics classrooms supports the instructors (Nardi et al.,
2005). The research role of the project necessitated my reflection on my practice and thus
supported my teaching role.

Incorporating learner-centered teaching practices into habitual teaching methods is not
straightforward. University mathematics educators, who agree with the importance of such
teaching practices, report challenges to incorporating these methods in their classrooms.
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Stewart and colleagues (2019) describe a mathematician who reverts to standard lecturing
practices, while encouraging participation, due to time constraints and the need for progress
according to the syllabus. These and other institutional requirements were also the source of
tension for instructors altering their teaching practices to learner-centered in Mesa and
colleagues’ study (2020). I found that, initially, using these methods was indeed not
straightforward.

Moderating a discussion-based workshop is very different from teaching traditional tutorial
classes. Although my tutorial teaching style included short discussions and in-depth
solutions, it is still very different from leading a workshop. During the small group phase of
the workshops, the students worked by themselves, and | answered questions. This was
difficult for me, since I felt that | was not teaching during that phase, as | was not being
active. In addition, when students struggle it is much easier to just give them the answer,
rather than pointing them in the right direction and letting them discover the answer
themselves. There was a constant conflict between these, yet with more experience | found it
easier to find the balance. | attempted to provide support for the students, while not giving
them the final answer. Additionally, I found that answering students’ questions while they
were involved in struggling with the mathematics allowed me to support them in a more
personalized manner.

Another difficulty for me was the absence of an exact structure and discussions planned in
specific detail. The whole class discussion in the workshop was based on the questions that
the students asked and the examples they constructed. Thus, although the lesson plans,
written in advance, planned general ideas and families of examples, the list of these could not
be exhaustive. The students kept coming up with new mistakes, new narratives and new
examples. The lesson plans included difficulties students might encounter, some ways of
solving the problems, and possible counter examples. However, some of the discussions were
tangential to the main mathematical idea and some were based on examples and claims
authored by the students. Before each workshop, | felt the stress of going into a classroom
without feeling well prepared. | hoped | would be able to answer questions, think fast enough
of a counter example to their claims, remember all the theorems and definitions, not get
confused and not make mistakes. This is a worry teachers face when teaching for explorative
particiaption (Heyd-Metzuyanim et al., 2019). However, with more experience of this type of
teaching and with the support of experts with whom I could reflect on what happened during
the discussions, | became more comfortable and less worried about possible issues and
mistakes.

There was one workshop in which I did become confused and made a mistake on the board.
In the workshop about linear transformations, | modified an example of a student and asked
what changed in the properties of the linear transformation. A lively, meaningful discussion
about the properties of linear transformations defined on bases ensued. Then, a student asked
if the property of linearity holds for linear transformations constructed on a basis. While
proving this on the board, with input from the class, | realized that the proof we were
constructing was circular. We were using linearity to show that the transformation was linear.
| explained to the class why there was a problem in the proof. We then discussed what needed
to be proved, and what was given. First, | told the class that | would get back to them with the
proof, and meanwhile we will just use the theorem. | was not comfortable with this but did
not want to waste more time on it. Then | remembered that the theorem assumes linearity,
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and thus it cannot be proved. | explained this to the class, and the discussion continued with
other topics.

At first, | felt terrible. I made a mathematical mistake on the board, and it was not an
arithmetic error (which I do all the time). This was a metarule of logic and proving — we were
trying to prove what needed to be assumed. | wasted valuable class time on something that
did not advance the students. Watching the recording of this and receiving feedback on this
incident from a mathematical pedagogical expert showed this incident in a different light. The
students experienced doing real mathematics — trying things out, attempting other methods,
getting confused, figuring out what was given, and deciding what needs to be proved. This
was a good learning opportunity for the students during this episode, and I hope this
advanced their learning. | learned that even if the worst happens — and | make mistakes - it
can be used as an opportunity for teaching and learning. After |1 worked through it, I realized
maybe it was not as terrible as | experienced it in real time. In addition, after this I was less
stressed going into class. The worst had happened, and I survived, the students learned, and
they were eager for the next question. But this was a stressful lesson for a teacher to learn.

The teaching aspect of the project was different from what | was used to, yet it was
challenging to fathom how to adjust my teaching patterns to suit the context. It was exciting
to learn new things and meaningful for me and the students.
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10 Appendices

10.1 Appendix A - Lesson Plans

10.1.1 Complex Numbers (Week 2)

Lesson Goal: The question explores logical implications between statements using complex
numbers. While searching for examples for which the various statements are true, the
students will practice using the definitions and representations of complex numbers. In
addition, the connections between the different representations of complex numbers will be
reinforced through using both representations and discussions about the complex numbers,
thus bolstering the objectifying of the complex field and its realizations. The question also
examines the logic involved, by discussing when two statements are equivalent, when one
implies the other and when there is no connection between them.

Introduction: (7 minutes) Reminding the students of the basic definitions that they saw in
class.

Definitions:
1. Algebraic representation (a+ib), Trigonometric representation (r - cis 0), Geometric
representation (2-dimensional plane)
2. Im(2), Re(2), z, |z|, arg(z)

Question: (15 minutes) The students will work in small study groups of 2-3 students in each
group. The students will choose their own group.

Let z1, z2 € C such that z1, 72 # 0.

1) Letz; - z, € R. Which of the following statements is always true? Which statement is
never true? Which statement holds for specific cases of z1, z> €C?

a) 21=2,
b) z1=0a- -2z (aeR)
C) zt-zz=1

d) Im(z1)=0
2) Give a statement for which the following is true:

i—l € R & (statement)
2

Solutions:
1) z,-7z, ER

a) Example of z; - z, € R and (a) holds:
z;=1+i,z,=1—-i=z;and (1 +i)-(1-i)=]z]|?=2€R

Example of z, - z, € R and (a) does not hold:
7z,=1+4+i,2,=3-3i=3-Z;#z;and(1+i)-3-3i))=6=3-|z4|2 €R

b) Example of z; - z, € R and (b) holds:
Al =i’ ZZ=21; 21=§'22,§6Rand21'22 =-2€R

Example of z; - z, € R and (b) does not hold:
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2y =1+0,2,=2-2i,zy #a-2;, «€R and
Z,2,=(1+1)-2-(1-D)=2-[1+i*>=4€R

c) Example of z; - z, € R and (c) holds:
z1=1,2z,=—i,2z} - z5=i?-(—-)?=(-1)-(-1)=1landz -z, =1€R

Example of z, - z, € R and (c) does not hold:
z,=10,2,=3i,z2-z2=i?-3i)?=(-1)-(-9) #landz, -z, = -3 ER

d) Example of z; - z, € R and (d) holds:

2,=1,1,=2

: 2,2,=12=2€R and Im(z)=0

Example of Z,-Z, € R and (d) does not hold:
z,=1,2,=land z-Z,=1-i=-1€R but Im(z))=1#0

Z
2) Statements that are equivalent to Z—l eR:
2
Geometric representation:

y r.cis@
ceRe 11 ¢

. _ Re
z, r,ciso,

:—1-cis(<91 _0)eR o Im(%-cis(el _0)=0&

2 2
sin(@,-6,)=06-6,=r-kkeZ
o0 =0,or6=r+0,0r0,=7+6

< arg(z) =arg(z,) or arg(z,,) = 7 +arg(z,,)

Algebraic representation:

Z,-Z, ceR < (a1+ib1)'(a2_ib2) cR &

——cR<o
25 Z, [’ a’ +b?
(aa, +bb,)+i(a,b -ah,)eR <
ab-ab=0<

by

If a,a,#0 b _b & arg? 6? geometric?
aQ

If 8 =0=Db,#0 since 2, #0 and then &,b,—ah, =0=
a,b, =0=b, =0 which means z, =b i,z, =h, i

and so in this case (3 =0) izbl—'l_zﬂeR.
z, bl b,

Connection between representations:

e arg(z)=tg™ (ﬁj
a

110



o 19(6)=-19(6,) =6 +6,=nKor 6 =-0,

e Drawing the numbers on a Complex plane

General discussion (15 minutes) The students will be asked to present on the board:

1) Examples of complex numbers for which the statements are true and to show this.
2) Examples of complex numbers for which the statements are false and to show this.

3) Discussion are any of the given statements equivalent to z,-Z, e R,

_ z
4) Examples of statements that are equivalent to Z—l eR.
2

The connections between the different representations of complex numbers will be indicated.
The students can be asked if the solutions are the same and how do they connect.

Questions for further discussion
These questions can also be used for students who need additional challenges during the
small group period. These questions further explore the same concepts as above, while

allowing the students to be more creative. If there is extra time in class, they can be discussed
with the whole class.

1) Let p(x)= Zaix‘ be a polynomial of degree  such that & € R.

i=0
Prove that if Il is odd then p(x) has a real root.

2) Is the other direction true? Is | odd < p(x) has a real root?

Conclusion (5 minutes) The connections between the different representations of Complex
numbers will be reified, the Complex field and its elements as a mathematical object will be
discussed. In addition, when two statements are equivalent, when one can be induced from
the other but not the other way will be mentioned.
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10.1.2 Matrices (Week 3)

Lesson Goal: The question explores how the rows of C influence the rows of CD, and how
the columns of D influence the columns of CD. The question also demonstrates that the
opposite does not hold, that is that the columns of C do not affect the columns of CD and the

rows of D do not affect the rows of CD.

In addition, the question practices manipulating matrices in different ways - as arrays of
numbers, as sets of rows, XN elements and as a mathematical objects. The connections
between these different methods of representing matrices furthers the objectification of the
concept of matrices.

Introduction: (7 minutes) Reminding the students of the basic definitions that they saw in
class.

Definitions:
e A, iselement in fourth row, and fifth column
n
e Matrix Multiplication: AB; =Y A,B,
k=1

e A =A;, Symmetric and Anti-symmetric matrices

Question: (15 minutes) The students will work in small study groups of 2-3 students in each
group. The students will choose their own group.

Let C be a matrix whose third column is all zero's.
Let D be a matrix whose second row is all zero's.

Examine CD and DC. Do they inherit any characteristics from C and D? That is, is the third
column all zero's? Is the second row all zero's?

Solution Method Possible Difficulties Advancing Questions
Trying on numerical examples | Finding minimal
C-D= dimensions
1 20 1)(1 2 2 1 for the question to be well
defined.
2102 : 0000 How do you multiply
1 20112 1 1 1| |Multiplyingmatrices wrong | matrices?
1 201){1 112
_ (*) Where is column 3?
Columns and rows mixed
up IsCD=DC?
Order of multiplication
wrong
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D-C=

1 22 1)(1 2 01

0 00 O0|210 2

211 1|1 201

111 2)\1 2 01

8 10 0 8
|0 0 00

5 9 0 6

6 9 0 6
Characterization of matrix
Vi C,=0 Wrong definition Write out an example
V] D,; =0 Order wrong Show me element 4,3 of the

matrix
Picture
Calculating elements
(CD)zJ' ZZCZkaj
k=1

General discussion (15 minutes) The students will be asked to present their solution on the
board in the following order:

1. Some worked examples
2. Picture

3. Calculating elements
4. General matrix

This order follows the order that the students' understanding of the concept usually takes, and
so builds on their previous understanding of concrete objects - arrays of numbers - to scaffold
their understanding of a matrix as an object that can be manipulated as a unit.

The connections between the different representations will be pointed out. The students can
be asked if the solutions are the same and how do they connect.

Questions for further discussion (8 minutes)

These questions can also be used for students who need additional challenges during the
small group period. These questions further explore the same concepts as above, while
allowing the students to be more creative. If there is no time for these in class, they can be
given as questions for the students to think about on their own.

1. If only one of the matrices has such a characteristic, does the product still have it?
The question is given that both C and D have certain traits, is this necessary? This can lead
to the discussion what is the minimal conditions necessary, so that a zero appears in the
product matrix. If only one element in the matrix is zero, what effect will this have on the

113




product? Can they construct two matrices with no zero entries such that the product will have
a row of zeros?

2. What other such traits are conserved by matrix multiplication?
This question is also a review of other new concepts, such as symmetric matrices, anti-
symmetric matrices, scalar matrices. The students can also define their own traits, such as a
row of all ones, all the elements in the given matrices are positive, all the elements are whole
numbers.

Conclusion (5 minutes) The connections between the elements of the matrix, the matrix as
an array and a matrix as a mathematical object will be pointed out.
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10.1.3 Systems of Linear Equations (SLE) (Week 4)

Lesson Goal: The question explores Systems of Linear Equations. These systems can be
represented as a list of equations, as a matrix and as a list of constraints on the variables. The
question asks for examples of systems, thus the student will explore the connections between
these different representations and this will support objectification of SLE's.

SLE is an obvious use of matrices, and students appreciate the matrices they just learned
when they see it as a useful and powerful tool. The set of solutions of a homogenous system
IS a vector space, and thus while learning vector spaces the students have a tangible example
to project the concept on.

Introduction: (7 minutes) Reminding the students of the basic definitions that they saw in
class.
Definitions:

e SLE isasystem of n linear equations with m variables.

e A SLE can be written in matrix form A-X =b, Ae F™™, X =

e A SLE has no solution iff r(A|b) = r(A) ;
A SLE has exactly one solution iff r(A)=r(A|b)=m ;
A SLE has infinite solutions iff r(A)=r(A|b)<m.

Question: (15 minutes) The students will work in small study groups of 2-3 students in each
group. The students will choose their own group.

2x—3y+z =4 is a linear equation with 3 variables.

a) Give a system of linear equations, including the one above, such that there will be no
solution to the system; there will be exactly one solution to the system; there will be
an infinite number of solutions to the system.

b) Give a system of linear equations, including the one above, such that (1,2,8) will be a
solution to the system AND there will be exactly one solution to the system; AND
there will be an infinite number of solutions to the system.

Possible Solution

No solution:
2Xx-3y+z=4

(a) B
2x—-3y+z2=5

For (b) there is no such system, since if there exists a solution, than there is not a case
of no solution.

Possible difficulty: Confusing single solution, does not exist any other solution, with no
solution, does not exist any solution at all
Advancing Question: How many solutions are there for system?
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Single solution:
The following matrix has a rank of 3, like the number of variables, so the system it represents
has a single solution.

2 -3 1
@0 1 0O
0 0 1
2Xx-3y+z=4
The system represented is <y =0
z=0

For (b) we first check that (1,2,8) is a solution of the equation given: 2-(1)-3-(2)+(8) =4
Itis.

Then we build 2 more equations that this is the only solution possible: y=2 and z=8. If we
do not give two more equations, than there will be more variables than equations and we can
find more than one solution. A less elegant solution : y+z =10 and X+2z=9. There are 3
constraints on the variables and the only solution is the one given.

Possible difficulty: Giving 3 equations when they are dependent.
Advancing question: Ask student to solve system and then discuss why the 3 equations are
the same information (multiple of each other etc.)

Infinite solutions

2Xx—-3y+z=4 2Xx—-3y+z=4
{2x-3y+z=4 OR OR

4Xx-6y+2z=8 —2X+3y-z=-4

For (b), since we saw from above that (1,2,8) is a solution, than any system given in (a) is
also a solution for (b).

Possible difficulty: Constructing a new system could lead to arithmetic errors or to
contradictions, which would give no solutions.
Advancing Question: What constraints are necessary to have infinite solutions?

General discussion (15 minutes) The students will be asked to present their solution on the
board for each case for (a) and for (b).

1) No solution
2) Single solution
3) Infinite solutions

The connections between the different representations will be pointed out. The students can
be asked if the solutions are the same and how do they connect.
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Questions for further discussion (8 minutes)

These questions can also be used for students who need additional challenges during the
small group period. These questions further explore the same concepts as above, while
allowing the students to be more creative. If there is no time for these in class, they can be
given as questions for the students to think about on their own.

1) What is the largest number of equations that can be used as an example that answers
the question?

2) What is the smallest number of equations that can be used as an example that answers
the question?

3) Ask the students for a set of constraints on the vectors, for example
{(x,2x,3x) | x e R} and ask the students to build a system that this is the solution.

Conclusion (5 minutes) The connections between the matrix representing the SLE and the
equations will be stressed. In addition, the rank of the matrix gives an indication of how many
equations are the minimum necessary for solving the question.
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10.1.4 Subspace (Week 6)

Lesson Goal: The question examines subspaces of R*. In order to answer the question, the
students should build examples of subspaces that fulfil the requirement, and thus they have an
opportunity to objectify subspaces and the connections between them. The question focuses
on a specific Vector Space in order to scaffold the objectifying of subspaces,

and the question also asks for a maximal value of n, thus answering the question should lead
to a discussion of when examples are a sufficient proof of a concept and how can a maximal
value be proved? Does existence of an example for a specific value of n suffice for a proof?

Introduction: (7 minutes) Reminding the students of the basic definitions that they saw in
class.

Definitions:
e A vector space is a set of vectors and a field of scalars for whom the list of 10
properties hold.
To prove a set of vectors, with scalars, is a V.S. 10 properties need to be examined.
e A subspace is a non-empty subset of vectors that is closed under addition and scalar
multiplication, for the same field.
To prove a subset of vectors is a subspace 3 properties need to be examined. (The three can
be combined into 2.)
e Let U,W <V be subspaces of a vector space V. Then U "W and U +W are also

subspaces. U UW s a subspace iff U cW or W cU.

Question: (15 minutes) The students will work in small study groups of 2-3 students in each
group. The students will choose their own group.

What is the greatest value of n, such that there exist subspaces W,, 1<i <n of R*® such
that:
Wl -,C«-WZ -,C«- o an—l an

Solution:
Example of subspaces:

(60 ol s Jeerfelc 23]

This example is forn=4, it can be expanded for a greater value of n.

(I A

Example 1:

a,be R} CR*®

Example 2:

aeR}g
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a,b,cd,e, f eR}zRM

a b c
a,beR:C..-C
}* *{(d e fj

General discussion (15 minutes)
The students will be asked to present their solution on the board.

For each example the students give, they will be asked to prove on the board that each W, is a
subspace and that they are not equal.
1. How does choosing a different order of putting in parameters change the Example 2?
2. How can Example 1 be expanded?
3. Given the Theorem: For subspaces S, T <V :
SCT < dimS <dimT
How does this effect the answer to the question.

.y

In this example $n=7$.

Questions for further discussion

These questions can also be used for students who need additional challenges during the
small group period. These questions further explore the same concepts as above, while
allowing the students to be more creative. If there is no time for these in class, they can be
given as questions for the students to think about on their own.

1. Using the 7 different subspaces from above, how many different subspaces can be
constructed using intersection, union and sum?

For which Kk is W, +W,,, =W 2

Give example of U,W CV subspaces, such that U +W =V .

Do there exist subspaces for which the sum is direct W, ®W, ,, =W, ?
Construct t subspaces of R*® such that W, ®W, ®---®W, = R*®,
What is the maximal /minimal t?

A O

Possible Solutions
1. If W, ={0} or W, =V | then union and intersection is:

W, AV =W,, W, n{0}={0}, W, {0}=W,, W, LV =V
If W, CW, then:
W, AW, =W, and W, UW; =W,
So no new subspaces will be constructed.
2. If W, CW, then: W, +W, =W, , so only for $k=6$ is this statement true.

3. ForU aboc a,b,ceR}; and W aboc
. = , 9, (= =
a b c 0 0O

U +W =V and since U "W ={0} then (4) U ®W =V

a 0a@o0
5.U1=OOOaG]R

a,b,c:eR}
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0 a0
U, = aeR
0 0O
0 0 a
U, = aelR
0 0O
0 0O
U, = aelR
{a 0 0 }
0 0O
U, = aeR
0 a0
{o 00 }
U, = aeR
0 0 a

C
3

Il
S
-

6. Maximalt:t=7
Proof: Using Dimension theorem: dim(U +W) =dimU +dimW —dim(U nW)

If sum is direct, then dim(U nW)=0
Minimal t: (t = 1 fulfils conditions, but is not interesting) t=2:

Proof: V ®{0}=V
Using {6}¢W,U CV .

U—abcabcR dW_OOO
o o o[ MG b ¢

U W ={0} and U +W =V so U ®W =V

a,b,CER}

Conclusion (5 minutes)

The connections between the dimension of the vector space and the possible dimensions of
the subspaces will be discussed. The concept of subspaces can be generalized to a general
vector space V of dimension . Objectifying the concrete vector space (matrices of a specific
order) should expedite the objectifying of a theoretical general vector space.
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10.1.5 Linear Dependence (Week 7)

Lesson Goal: The question explores linear dependence between vectors and the spanning
space of a set of vectors. Constructing examples allows students to investigate when vectors
are linearly dependent, which promotes understanding of the connection between the linear
span and a minimal spanning set. This is a necessary foundation for understanding basis and
dimension of a subspace, which is the next topic in the course.

In addition, solving the question utilizes counter examples to prove a statement.
Understanding the logic when a counter example constitutes a proof and when it is not
sufficient is difficult for students. The discussion about the answer to the question could be
guided to discussions about what is a sufficient proof? When is a statement always true, when
IS it sometimes true, and when is it never true? and when is a counter example sufficient.

The typical example given as an answer is from R", as this is what the term "vectors"
denominated in high school. If during the discussion no other examples are given, then
advancing questions will be asked in order that examples of matrices, vectors and polynomial
vectors will be introduced. Manipulating elements from these vector spaces, i.e. matrices and
polynomials, will help students objectify those elements as vectors also.

Complex fields add another level of complexity to the question, thus are left for the end of the
discussion. If a student has difficulty manipulating real matrices, then complicating it with
complex numbers does not help them. However, after the concept of matrices is objectified,
using complex numbers as entries in the array is straightforward.

Introduction: (5 minutes) Reminding the students of the basic definitions that they saw in
class.

Definitions:

A set of vectors {V,...,V,} SV is linearly dependent over F (a field of scalars) in V (a

vector space), if there exist scalars {&,@,,...,@.}, not all zero, such that > v, =0

i=1
If the only scalars for which Z”:ai v, =0 are =, ="=q, = 0, then the vectors are

i=1

linearly independent.

Question: (15 minutes) The students will work in small study groups of 2-3 students in each
group. The students will choose their own group.

V is a vector space over the field F . Are the following statements True or False?

If a statement is true, prove it. If a statement is false, give a numerical counter example.

1. {u,u, U}V is alinearly independent set and U, €V, then the set
{u;,U,,Us,U,} is linearly independent.
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2. {u,U,,u}cV isalinearly dependent set and U, €V, then the set
{u;,U,,Us,U,} is linearly dependent.

3. 1f {U,U,,...U} SV is a linearly dependent set, then SP{U,,...,Us } = Sp{U,,...,Us }.
4. 1f{u,U,,...u}<V isalinearly independent set, then Sp{U,,...,Us } = Sp{U,,..., U }

Possible Solution

1. False. Counter example: For v =R*, then
u, =(10,0,0),u,=(0,1,0,0), u, =(0,0,1,0) are linearly independent,
u,=(L1%0)eV and {U,,u,,u;,U,} is a linearly dependent set.
Using the definition : choose &, =10, =L a; =L, =1,

Or using a result that U, is a linear combination of the other 3.

Difficulties: Confusing definition of linear independence and dependence.
Advancing question: What is the definition?

Note: Exists U, so that {U;,U,,U,,U,} is a linearly independent set, for example

u, = (0,0,0,) . The above is a counter example, even though there exists examples

when it is true.
2. True.

Proof: If {U;,U,,U,} is linearly dependent, then there exist @;,@,,a; not all zero, such
that o -U, + @, -U, + a5 - Uy =0. Let ,=0, and then there exist ¢4, ,, 0,0, , not all
zero, such that @, -U, +at, -U, + Uy + @, -U, =0.

That is : {U;,U,,U;,U,} is a linearly dependent set.

Difficulties: Confusing definition of linear independence and dependence.
Advancing question: What is the definition?

3. Example for yes:
{(1,0,0),(0,1,0),(2,0,0)} a linearly dependent set

Spfu,, U, 13 =5p{(1,0,0),(0,10)}={(x, y,0)[ x, y e R}
Sp{uz""’ un}: Sp{(o’l! O)’ (2’010)}:{(2t1 y,O) | t, ye R}Z{(x, Y,0)| X,y e R}

Example for no:

{(1,0,0),(2,0,0),(0,1,0)} a linearly dependent set
Sp{uy,...u._}=5p{(1,0,0),(2,0,0)} ={(x+2y,0,0)| x,y e R}={(x,0,0) | x e R}
SP{u,,--,u,}=5p{(2,0,0),(0,1,0)} ={(2x,y,0) | x, y e R} ={(t, ¥, 0) |t, y e R}
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Sp{uy,..., U} # Sp{Uu,, ..., Ug} since (12,0) & Sp{u,,..., U} but (1,2,0) € Sp{u,,...,us}
So statement is false, since exists a counter example.

However, there exists examples when the statement is true.

4. False, Counter example:
{(1,0,0),(0,1,0),(0,0,1)} a linearly independent set

Sp{u,,...,u. . }=5p{(1,0,0),(0,1,0} ={(x, y,0)| x, y e R}

Sp{u,,...,u. }=5p{(0,1,0),(0,0,D}={(0,x,y) | X, y € R}

Sp{uy,...,us}# Sp{u,, ..., U}

Proof that it is never true, that is always SP{U, ..., U} # Sp{U,,...,Us}:

Let {U;,U,,...U } =V bealinearly independent set, such that Sp{U;,...,U. ,}=Sp{U,,...,u.}.

Then U, € SP{U;, ..., U, 1}, so there exist scalars &,..., @, ; such that _ =niai v,
i=1

{u,,U,,...u.} is linearly independent, so 0 ¢{u,,U,,...u_}, that means U, 0, so
notall ¢;, 1<i<n-1 are zero.

-1 . .
Thus, —y_ +n20‘i -v, =0, where not all the scalars are zero, then {Ul,...,Un} is a linear
i=1

dependent set, which is a contradiction to the given.

So, Sp{u,...,u. . }# Sp{u,,...,u }

General discussion (15 minutes) The students will be asked to present their examples on the
board in the following order:

1. R
2. Rnxn
3. R

This order starts with the familiar vectors and then shows other vector spaces.

The connections between the different vector spaces will be pointed out. The students can be
asked if the solutions are the same and how do they connect.

Questions for further discussion} (10 minutes)

These questions can also be used for students who need additional challenges during the
small group period. These questions further explore the same concepts as above, while
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allowing the students to be more creative. If there is no time for these in class, they can be
given as questions for the students to think about on their own.

1. Whatif v =R3*? Will (1) and (2) change?

2. For which V will (3) and (4) change?

3. Examples utilizing complex numbers:

i) For v =C*° give an example of vectors for whom the statement is true and when
the statement is false.

i) For V=C [x]={a X" +a, X" +-+ax+a,|a e C}

Conclusion (5 minutes)
We will review the main concepts:

1) A counter example proves that the opposite statement is true, but does not prove that the
statement is always false.

2) An example does not prove a statement is always true.
3) Linear span of different sets of vectors can be equal.

124



10.1.6 Linear Transformations (Week 10 or 11)

Lesson Goal: This question examines the relationship between a linear transformation and the
dimension of its kernel. Constructing examples of transformations that conform to the
definition given illustrates this for the student.

Linear transformations can be defined in various ways, and thus the question can be solved
using any of the definitions. However, it is simpler to use the appropriate definition for the
different parts. This question allows the student to consider which method is more efficient
for use, and highlights the connections between the different definitions.

Introduction: (7 minutes)
Reminding the students of the basic definitions that they saw in class.
Definitions:
1. T:V - W,where V and W are vector spaces, is a Linear Transformation if
VOLWEV,VaeEF T(a- v+ W) =a-T®)+TWw)
2. Ker(T)={#eV|T(v)=0}
3 IMM={T@)eW | veV}

Question: (15 minutes)
The students will work in small study groups of 2-3 students in each group. The students will
choose their own group.

Question:
Let T: R3—R3 be a linear transformation such that T(1,2,3) = (0,0,0)

and T is not the zero transformation.

1. Give an example of such a T such that dimKer T = 0, if there exists such a
transformation. Find a basis for Ker T and a basis for Im T.

2. Give an example of such a T such that dim Ker T =1, if there exists such a
transformation. Find a basis for Ker T and a basis for Im T.

3. Give an example of such a T such that dim Ker T = 2, if there exists such a
transformation. Find a basis for Ker T and a basis for Im T.

4. Give an example of such a T such that dim Ker T = 3, if there exists such a
transformation. Find a basis for Ker T and a basis for Im T.

Possible Solution
1. (1,2,3)isin Ker T, so dim Ker T > 1. Does not exist sucha T.
2. Complete {(1,2,3)} to a basis for R3: {(1,2,3),(0,1,0),(0,0,1)}
Define:

T(1,2,3) = (0,0,0)
T(0,1,0) = (1,0,0)
T(0,0,1) = (0,1,0)

Thus T(x,y,z) = T((x) - (1,2,3) + (y-2x) - (0,1,0) + (z-3x) - (0,0,1)) =

= (x) - (0,0,0)+(y-2x) - (1,0,0)+(z-3x) - (0,1,0) = (y-2x,z-3x,0)
Bkerr=9{(1,2,3)} sodimKer T =1
BimTt={(1,0,0), (0,1,0)} sodimIm T =2
Using Solution method: Spanning set for Im T is {T(v1), T(v2),T(v3)} where {vi, vo, v3}isa
basis.
dim Ker T + dim Im T = dim V = dim R
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3. Complete to a basis and define:

T(1,2,3) = (0,0,0)
T(0,1,0) = (0,0,0)
T(0,0,1) = (1,1,1)

Thus T(x,y,z) = T((x) - (1,2,3) + (y-2x) - (0,1,0) + (z-3x) - (0,0,1)) =
=(x) - (0,0,0) + (y-2x) - (0,0,0) + (z-3x) - (1,1,1) = (z-3%,2-3X,2-3X)

Bkerr ={(1,2,3), (0,1,0)} so dim Ker T =2
Bmt={(1,1,1)}sodimIimT =1

Using Solution Method: Im T = {(z-3X, z-3x,z-3x) | z,x € R}= {(z-3x) - (1,1,1) | z-3x e R } =
{a- (I,1,1)|aeR } =Sp{(1,1,1)} so Bimt={(1,1,1)} since a single spanning vector is

linearly independent.

4. IfdimKer T=23 thendimIm T =0, so T =0. However, it is given that T is not the
zero transformation. So such a T does not exist.

OR

If dim Ker T =3 Then Ker T is a subspace of R® with dimension 3, so Ker T = RS,
which means that T is the zero transformation.

Part of Solution

Possible Difficulties

Advancing Questions

Completing to a basis of R®
{(1,2,3),(0,1,0), (0,0,1)}

Choosing a linear dependent
set

Why is it a basis?
When is a set a basis?

Choosing non-spanning set

What is the general element
of R3?

Not using a basis to define T

**

Defining T on this basis

Not linear

What is T(0,0,0) or image of
sum of some vectors?

Does not fulfil condition of
guestion

What is T(1,2,3)?

Dimension of Ker T is
wrong

Which vectors are in Ker T?

Finding general element

Finding scalars

Finding bases

Using Dimension Theorem
to prove 3 not possible

Whatis Im T, if T is zero
vector?

General discussion (15 minutes)
The students will be asked to present their solution on the board in the order of the questions.
Questions for further discussion (8 minutes)

This question can also be used for students who need additional challenges during the small
group period. These questions further explore the same concepts as above, while allowing the
students to be more creative. If there is no time for these in class, they can be given as
questions for the students to think about on their own.

126




Redefine T such that T(1,2,3)=(1,2,3), answer the same questions as above.

1. dimKerT=0
T(1,2,3) =(1,2,3)
T(0,1,0) =(0,1,0)
T(0,0,1) =(0,0,1)

dimKerT=0iff Ker T = {6}, so no vector can have an image of (0,0,0).

Possible difficulty: T(1,2,3) = T(0,1,0) = (1,2,3), this also leads to Ker T # {6}, since then
T ((1,2,3)-(0,1,0)) = (0,0,0) from the linearity of the transformation.

2. dimKerT=1
T(1,2,3) =(1,2,3)
T(0,1,0) = (0,0,0)
T(0,0,1) =(0,0,1)

Possible difficulty: If two independent vectors have zero as their image, then the dimension
will be two.

3. dimKerT=2
T(1,2,3) = (1,2,3)
T(0,1,0) = (0,0,0)
T(0,0,1) = (0,0,0)

Advancing question: T(1,2,3)=(1,2,3) ; T(0,1,0) = T(0,0,1) = (1,1,1). What is the dimension
of the kernel?

To solve this it is simplest to find dimension of the Image and use the dimension theorem, but
it can also be found directly:

Ker T ={(x,y,z) | T(x,y,z) =(0,0,0)} =
= {(X5yaZ) € R3 | T ((X) ' (112!3) + (y-2X) ' (01110) + (Z_‘?’X) ' (010!1) ) = (0’010) }
= {(x,y,2) € R®| (X) - T(1,2,3) + (y-2x) - T(0,1,0) + (z-3x) - T(0,0,1) =(0,0,0) }
= {(x,y,2) e R®| (x) - (1,2,3) + (y-2%) - (1,1,1) + (z-3x) - (1,1,1) =(0,0,0) } =
= {(x,y,2) € R®| (X +y-2X+2-3X, 2X+y-2X+2-3X,3X+y-2x+2-3X) = (0,0,0)} =
X+y—2x+z—3x=—-4x+y+z =0
={(x,y,z)e[[&"3| {2x+y—2x+z—3x =-3x+y+z=0
3X+y—2x+z—-3x=-2x+y+z=0
= {(xy2) €R® | x=0; y=-2}={0y,y) | y €¢R®}
Thus, dim Ker T = 1, and this is not an example for dim Ker T =2.

4. dimKerT =3
Since T(1,2,3) # (0,0,0), then (1,2,3) is not in the kernel. Thus, Ker T # R3 Ker Tisa
subspace of R*and so dim Ker T # 3.
OR
dim Ker T =3 iff dim Im T =0, by the dimension theorem.
Im T = Sp{T(1,2,3), T(0,1,0), T(0,0,1)} = Sp{(1,2,3), T(0,1,0), T(0,0,1)},
so dim Im T > 1, that is dim Im T =+ 0, so for this T, dim Ker T # 3.
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Conclusion (5 minutes)
Linear transformations can be defined as a general element, on the elements of any basis or
by the kernel or image. The connections between these various definitions will be stressed.
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10.1.7 Diagonalization and Eigen Values (Week 13)

Lesson Goal: The question explores eigenvalues and diagonalization. This is the last topic of
the course and utilizes all the previously learned topics. Calculating eigenvalues of a given
matrix can be done ritually, by routines. This question asks for conditions on parameters for
diagonalization. The routines are not sufficient.

The question also includes noting extreme cases, (e.g. A=0, A isa 1x1 matrix). These can
be cases for which statements hold, and need to be taken into account. Students should be
aware that these cases should be explored also.

Introduction: (7 minutes) Reminding the students of the basic definitions that they saw in
class.

Definitions:
1. AeF isaneigenvalue of a matrix Ae F™", if there exists Ve F", vV = 0, such that
AV=A-V.
2. The characteristic polynomial for matrix Ais p(1) =/ A-1 - A|, whose n roots are the
n eigenvalues of A.
3. AM (A1) =Arithmetic Multiplicity of . = Multiplicity of /1 as a root of the

characteristic polynomial.
The sum of the AM’s is n.

4. GM (1) = Geometric Multiplicity = dimension of i's Eigen space =
dim{V| A-v =24V}
5. AM>GM >1

. Zn:ﬂ,, =tr(A) and ﬁi, =det(A)

7. Aisdiagonalizable < for all eigenvalues AM=GM

(o2}

Question: (15 minutes) The students will work in small study groups of 2-3 students in each
group. The students will choose their own group.
Let A be an ,,..,, complex matrix.

ai a2 e an
A: ai a2 n
ai a2 e an

For what conditions on 8,,d,,...,a. is A not diagonalizable?

Possible Solution:
e Ifa =a,=--=a =0then A isdiagonal, and thus diagonalizable.

o Ifa#0 forsomei, 1<i<n (atleastone &, the rest can be whatever) then
r(A) =1 and if n>1 then A is not invertible, thus 0 is an eigenvalue with GM
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n—r(0l —A)=n-1.1f n=1then A isa 1x1 matrix and is diagonal, thus
diagonalizable.
e AMof0 >n-1=GM, by Theorem.

e Find value of 4, the last eigen value:
If 4, =0 then AM(0)=n=n-1=GM(0) and A is not diagonalizable.
If A, #0 then AM(0) =n—1=GM(0) and then for A, it holds also that GM=AM,

so A is diagonalizable.
e A is not diagonalizable when & #0 for some i, n>2 and A4, =0.

e By Theor em Zﬂ,, =tr(A),so 0+--+0+4 =a +a,+-a

i=1
A is not diagonalizable if & +&,+--+a =0, forsome | & #0, n>2.

General discussion (15 minutes) The students will be asked to present their solution on the
board:

The connections between the different solution methods will be pointed out. The students can
be asked if the solutions are the same and how do they connect.

Questions for further discussion (8 minutes)

These questions can also be used for students who need additional challenges during the
small group period. These questions further explore the same concepts as above, while
allowing the students to be more creative. If there is no time for these in class, they can be
given as questions for the students to think about on their own.

1. Give a Linear Operator whose matrix representation in some basis is A
2. Find Ker T, Im T, and the Eigen space of 0.

Solution:
01-10
01-10
Take n =4 for an example, and A= :
01 -10
01 -10

Each column is Image of element in basis, so choose standard basis and:
T(1,0,0,0)=(0,0,0,0)

T(0,1,0,0)=(1,1,12)
7(0,0,1,0)=(-1,-1,-1-1)
T(0,0,0,1)=(0,0,0,0)
Then T(x,y,z,w)=(y—-2,y—-2,y—12,y—12), by properties of linear operator and basis.

KerT ={(x,y,z,wW)|y-z=0,xy,z,we R}= KerT ={(x,y,y,W)| X, y,we R}
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ImT ={(y-z,y-2,y-2,y-2)|y,ze R}= ImT ={(t,t,t,t) |t e R}

Eigen Space (0): Find Eigen Vectors:

X 0
(OI—A)y:O
z 0
w 0
0 -1 1 0)(x 0
0 -110|y]| |0
0 -110fz| |0
0 -1 1 0j)lw) (O

Solving the System: —y +z =0 yields 3 linear independent eigen vectors:
{(2,0,0,0),(0,1,1,0),(0,0,0,1)}

Eigen Space for 0 is the linear span of these vectors:
Sp{(1,0,0,0),(0,1,1,0),(0,0,0,D}={(x, y,y,W) | X, y,we R} = KerT

Also note that dimimT +dimKerT =1+3=4

Note: If dimKerT =3 is T diagonalizable?
Not necessarily, since Ker T is the eigenspace of 0, the dimension is the GM. However, the

AM can be different. For the above matrix the characteristic polynomial is: p(1)=A4", the
AM of 0 is 4, and A is not diagonalizable.

Conclusion (5 minutes) The connections between the kernel, the image and the Eigen space
of 0 will be discussed.
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10.2 Appendix B - Small Group Preliminary Analysis

Group | Topic Participants Language | Interaction
1 |S3-1 Linear Three girls English The girls worked together,
dependence gave examples immediately,
minimal discussion

2 [S3-2 Linear Alice & Ben | English Ben tells Alice what to do,

dependence Much discussion

3 |S4-1 Linear Sarah, Alice, | English Sarah quiet. Others worked

Transformat | Nicole together, both suggest and
ions discuss

4 | S5-1 | Eigen Alice and 2 English Alice tells others what to do,

Values other girls some discussion
5 |S5-2 Eigen Three girls English Discussion very not clear
Values
6 | W1-1 | Complex Three boys, | Arabic - Ahmed does most of talking
Numbers Arabic Translated | at beginning, then involved
others in discussion. Cadi
suggests correct answer
which was ignored initially.

7 | W1-2 | Complex Segev, Ziv, Hebrew All three discuss, made

Numbers Orr mistake and realized it.
Attempted to build counter
examples

8 | W2-1 | Matrices Gal, Dor, Hebrew Initially, Harel tells others

Harel what to do, but then makes an
error. Then starts a discussion
with all three involved

9 |W3-1 |SLE 2 boys Arab | Hebrew Minimal discussion. When

& Hebrew Ahmed suggests Yaniv does
not listen.

10 | W3-2 | SLE 2 boys Hebrew Both state answers and claim
“its simple/obvious”. No
justifications given, so no
discussion.

11 | W3-3 | SLE 2 boys Hebrew Leader and follower
Basically, monologue of
leader

12 | W4-1 Linear 2 boys Hebrew Expert and follower

Dependence Follower asks Eexpert for
confirmation of math and
social: “should we write it?”

13 | W4-2 Linear Yaniv & Hebrew Both discuss, both suggest.

Dependence | Hadar There is a mistake and then
discuss

14 | W4-3 | Linear Boy & girl Hebrew Leader & Follower

Dependence Girl is expert

132




15 | W5-1 Linear Group 1 SLE | Hebrew Work separately
Transformat When minimal discuss:
ions Ahmed treats Yaniv as expert
16 | W5-2 Linear Group 1 Hebrew Attempt to be an expert, but
Transformat | Matrix does not work. State answers
ions with little justification or
discussion.
17 | W5-3 Linear Boy & Girl Hebrew Girl is leader and tells Boy
Transformat what to do
ions
18 | W6-1 Eigen Yaniv & Hebrew Expert and follower
Values Nadav
19 | W6-2 | Eigen Gal, Dafna, Hebrew Two suggest things and all
Values Hadar discuss things. Much
discussion about why?
20 | W6-3 | Eigen 2 Boysand 1 | Hebrew Bar attempts to be expert,
Values Girl others don’t accept him.

Discussion about definition of
diagonalizable
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10.3 Appendix C - Hadar and Yaniv
10.3.1 Appendix C1 - Transcript of Hadar and Yaniv (Translated from Hebrew)

Speaker

26 Hadar (Assertation) 2...a linearly dependent set, u belongs to V...

27 Yaniv Yes. It (the assertation) is definitely true.

28 Hadar A linearly dependent set, u belongs to V, all these together
({v,,v,,V,,Vv,}) are linearly dependent...Are you sure it’s true?

29 Yaniv If it ({u,,u,,u}) is already linearly dependent, and we add another
vector, this subset is still linearly dependent

30 Hadar Why? Take now 3 like this (w. = (1,0,0,0))...take 3 like this [points to
(1,0,0,0)], and now you add to them this (v.=(0,1,0,0))...not
necessarily (that the set is linearly dependent)”

31 Yaniv What do you mean? What do you mean 3 like this?

32 Hadar We said uz, Uz, us are linearly dependent.

33 Yaniv No, but, here they (.., wc- wc=) are linearly independent.

36 Hadar Fine (downplaying).
That’s why I said let’s take 3 that are dependent with ul [looks at
Yaniv].
Let’s say here is 2, 3 and 4.

37 Yaniv Nu. That’s exactly what I am saying. If we add, doesn’t matter what
we add...these 3 vectors will still be dependent [looking at Hadar]

38 Hadar The 3 (vectors) are (Linearly dependent). But the fourth isn’t. So, the
entire set is linearly independent

39 Yaniv Why?

40 Hadar Because...Because it’s possible. You can bring
u1=(1,0,0,0) ; u2=(2,0,0,0) ; uz=(3,0,0,0) ; us=(0,1,0,0).

41 Yaniv Then it is still linearly dependent.

42 Hadar How is it linearly dependent?!? [disagreeing]

43 Yaniv No, it (the vector) isn’t — but the set altogether is.

44 Hadar Why? If you find scalars, that not all of them are zero...?

45 Yaniv ...that means that it is linearly dependent.

46 Hadar And this (the linear combination) won’t be equal to zero, because this

(u4), you cannot neutralize if you don’t put a zero for him
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47 Yaniv Yes. But it doesn’t matter if he will be zero, if all the rest uh...if there
1sone ...
48 Hadar Then show me how
49 Yaniv No, that’s what I am saying. If there is at least one...uh...if there is one
scalar
50 Hadar Then show me how
51 Yaniv No, that is what I am saying. If there is at least one...uh..if there is one
scalar
52 Hadar You are saying that if we cancel them out in a manner that is not zero
and this one you brought for me that is zero
53 Yaniv Exactly
53.1 | Hadar Ahhh...I understand
53.2 | Yaniv If there is one scalar at least that is different from zero...then it
54 Hadar That’s OK.
So you are saying, like, that if in general there exists...exist at least two
that are linearly dependent in the set, it doesn’t matter which vector we
add to them the set will still be linearly dependent.
55 Yaniv Yes. Or...if it is 1 then simply
56 Hadar I don’t understand [to Yaniv]
57 Yaniv Like, if there is...If one of these vectors is zero,
58 Hadar Ummhmm [agreeing]
59 Yaniv Then it doesn’t matter by what we multiply it...there will still be zero.
60 Hadar Ah! And that makes for us a linearly independent set.
61 Yaniv No. A dependent set.
62 Hadar Linearly dependent
63 Yaniv Because there is one scalar that is different from zero.
64 Hadar Hmm...then it is linearly independent.
65 Yaniv Linear independence is what she wrote (looking at the board)
66 Hadar There exist scalars that, that not all of them are zero
67 Yaniv INo, that...no
68 Hadar Then if we found one scalar that is not zero
69 Yaniv Yes?
70 Hadar Then, if zero is in the set...then it (the set) is always linearly

independent
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71 Yaniv No. Linearly dependence says that there are linear combinations

72 Hadar That (Linear dependence) means that alpha 1 is equal to alpha 2 is equal
to zero, they are all equal to each other and they are equal to zero.

73 Y That’s not that it is linearly independent?

74 H It’s linearly independent

75 Y Yes [both laugh]

76 Hadar \We are getting confused with the definition

77 Y It’s linear independent [laughing]

78 Hadar Yes.

Then...if we have all sorts in the set, and we put for all of them zero,
but for the zero vector we put 3...

79 Yaniv That’s it. Exactly.

80 Hadar Then the set becomes?

81 Yaniv Linearly dependent.

82 Hadar Dependent.

83 Yaniv Yes.

84 Hadar OK. That’s the idea. The idea...exactly the conclusion at the end.

85 Yaniv | hate these acronyms [laughs, hides mouth]

86 Hadar Then wait a second...then..Wow! It’s hard to realize this. That it () will
always be dependent...We are saying it’s always true [marks check on
paper]

87 Yaniv Yes. Its true. We need to prove it.

88 Hadar Ummm

89 Yaniv Ummm

90 Hadar If this set is linearly dependent then it can be done, and this we can
always multiply by zero

01 Yaniv That’s it. Let’s assume that this set is linearly independent, and then

92 Hadar Set? Ah! You want to assume by way of contradiction

93 Yaniv Ah huh.(affirmative)

94 Hadar \We can do...if we said all these have an alpha 1, alpha 2
95 [Yaniv That’s it. A subset.

96 Hadar /Alpha 3. And here an alpha 4....will be zero

97 [Yaniv No. Actually we do not have to assume by negation

98 |Hadar \What is always, yes linearly dependent
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99 |Yaniv \We say that...there is here a subset that is linearly dependent
10QHadar That is, exist scalars such that the sum of this set will be equal to zero,
Even if they (all the scalars) are not equal to zero.
101Yaniv Exactly
102Hadar /And then if we add another vector, we can multiply it by zero
103 |Yaniv Then...uhhhh...we need to write it down?
104 |Hadar No. If you can repeat it orally on the board
105 |Yaniv On the board?! That’s not orally (nervous laugh)
106  [Hadar Orally on the board (laughing)
107  [Yaniv Laughs
108 |Hadar Like, if someone wants to go to the board, OK OK. Let’s continue.
109 |Yaniv OK
110 |Hadar No. We have the idea of the proof in our minds
111 |Yaniv Yes
112 |Hadar Let’s continue.
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10.3.3 Appendix C2 — Channels of communication analysis of Hadar and Yaniv

N7 v Non Group | 1
Verbal 2Partl
Priva RPN 71121 R? AR RANT N1 DO XNT... [ 7 | 1155 | 2
te ToRWT DX
Private N> 4U....7011 , 7M. OR.IR | 200 3
Pro RS V OR...7°7° 717 2007 O 7010 OR Al | 20D 4
7OV A0 | DMV, R L4 D DY o T
450
Pro nPaR 9127 90277 IRV 3 P D wY | 0 5
5'"n
Pro 2"'n XY NP 7107 | 2 6
Pro El,e2,e3 00027 77 OK 7°A1 | 2o 7
5"na 1R 4 opna 0 npon
Pro 5N IR MR WD | 20 8
Pro 2102 27907 IR 2N°9°¥D0 RAMT RO2AT7 TN | 200 12:45 | 9
LR
reac RAN7 | 17 10
Pro 2U+1U 21059 qwoR 0ws 7R | 201 11
reac .72 1IR3 0PI0AR 77..KD | 170 12
pro I0RY 7193 TR N 0K R 71011 OK | 177 13
priva S'nar | 2 14
te
pro 9507 T°X 9"'Na Hawa | 177 15
20 IR RY 77 199K ,IN0 IR 1D DR RN
pro U1=(1,0,0,0); U2=(0,1,0,0); a7 | 14:05 | 16
U3=(0,0,1,0); U4=(5,0,0,2)
pro onant | 0 17
reactive P |2 18
pro 5'"n 1977V DRI AX12p DN | 200 19
react 27 |7 | 14:42 | 20
pro ..717282 3 Ywoy mpon | 170 21
pro oY 19577 K2...777 IR 072 9°01 ADR Pway | 977 22
reac 277982 3 nmn't i 20N’y an | 20 23
pro 5"n 3U ,2U ,1U v 11nR... 73,0717 0K | 777 24
. IPROW N2 D100 IR
re XD | 2o 25
pro 5"na o no PaR | 26
pro L W ORIPY MR D P 07 | T 27
reac W INR XY ,RD | 777 28
reac IR RANTA KD | 2 29
reac 0w 3 np1 Xaw *NONR a7 993 [w0a] 1702 | 773 30
. 1U oy n»R1% 0190
pro LAN32W W TAIRY | T 31
reac IR CIRY TR PYTRAT | 200 32
pro 377...9°00 71 awn XY L9700 MK OX | 201 33

.0°170 PUTY ORI 20U
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reac 030 | 34
pro X2 °¥°277 9aR | 110 35
pro 5"N2 77°7N 77210 AP0 IR | 777 36

pro b | | 15:15 | 37
rea WOHK °D...%0 | 177 38
pro DR X°2777 WOR | 170 39
U1=(1000); U2=(2000); U3=(3000);
U4=(0100)

re NOIRDY 120 POV AT IR | 20 40
pro 20°IRPY 9N PR | 777 41
reac — K7 M¥Y X7 LRD | 20 42
pro 19 712 X¥I12P7 90 PaR | o1 43
rea 1% | 17 44
pro ....DOR 0712 ROV ,0°71970 R¥»N OX | 777 45
rea NIRDY 9N ROAW IR Y.L | 2 46
pro 912° X7 DR LT DR 0D ,00K ANW 770 X2 AN | 77 47

DOX 17 D°WN K7 OX DOHRY
re Jo | 2 48
pro 9 oK ,0DX 7 R O 7w RY A7 9aAR | 20 49

LIOR W0 DR LR IRWD
pro TR IRIN IR | 170 50
rea TR WO ORI OIRY 70 77 LRD | 200 51

7NX T9P0 W OX...IR..MD7

reac DOR K7 RN 771¥2 2MIR 021w MR A0R | 177 | 16:00 | 52

DOX 19 R7W °9 DRI 7T XY
reac P17 | 2o 53
reac NI2T...0R | 277 54
pro IX..DDRM 71 RITW MDY AR 1970 W OXR | 0V 55

TR 7

reac 7021 | 70 56

pro NRY 0990 0w 2 Nnvp 09901 oK IR | T8 57
X127 U7V On9 AP0 T mIwn XY %1302
5"n 7N
rea RN 58
pro DOXR AT "D LIWD IR 1 77 OXR..IR 59
pro 5" 03 77K RO TR X292 0ORT OX | 2 60
reac NI R | 177 61
reac DORIT K177 17K 2P N0PIN TR OR IR | 2 62
reac [[mo0n] ameR | 10 63
pro DOX 1777 1TV... 3R 79021 N2 mIwn XY IR | 20 64
rea SR | T3 65
pro 2'"N2 %12 1% VW B T IR | 773 66
reac XD | 2D 67
pro %0 %P | 2 68
reac DOIRY 7190 | 770 69
reac DORM INWW PO W 0D | o 70
reac *Hy 2"N2 RO IR0 | 7T 71
n2°mn
pro mon oy "o Xaw an AT 2'na | o 72
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reac .DDX 0710 ROW...w ©°19p0 2P | 770 73
reac N7 .0 XD | 21 74
pro DOR X7 XITW NN 72P0 RN DX X | 777 75
reac 779 | o1 76
pro 5"N2 70 X7 IX... ¥12P2 0OR OK ,IN | 77 17:00 | 77
reac X2 | 2 78
pro DIRTD O1R W MR T RN | 1 79
reac 0% MW 2 XOYRY MW IRDOR W IR 77 | 177 80
pro 0% 2w am "1 IR Q"MW a2 | 177 81
reac 29"N2 Roaw X a7 | 20 82
reac 2"na R | 177 83
reac QpPmx |2 84
reac 777372 0°92%20 MK | 777 85
reac P 5"naar | 86
reac N01 | 177 87
pro oW1 0°77P0 "1 75 IX12p2 WY W oK IR | 777 88
317 D°W3 DORT MVPI? DAR ,0OR 0137
reac YT | o 89
pro N1 o9 IR IR | 777 90
rea nMRIL N | 2 91
reac 70 | 110 92
reac Py | 2 93
reac TR 0 | M02 mpona wan a7 A .anpan ot OK | 273 94
pro P 19K 22777 DR RNW OIR | 20 95
79 7°N0M
pro TTW LT DR DI9ND WP RN LLLIRLLIAT IR | T8 96
.70 77 TN
pro nkraR 1101 ATW DM WMIR | 777 97
reac D170 | 2 17:43 | 98
pro TT R 70RO | 201 99
172 0°M12 7AW 100
private | | R |2 17:53 |101
pro ;AT DR MIWY? WwoR "N DRI %12p0 OX | 170 102
pro DOXA 21957 TnN 1 XY | 773 103
private XY ,9"N2 DRI AXAPO A AT | D 104
rea 79°9W3a M1 ¥ A0K LON1T IR | T3 105
reac TR | 20 106
pro TR 92 Mwy? WwoR | 177 107
pro 2 RDOR 1 RO O W 1MR | 7T 108
private 7% DN AT OaT | 2 109
pro 0 770 ROPRA 17191 .3 ROOKR | 177 110
private 7279w mI? TI% KD O¥ya KD | 20 111
pro "N | 013 112
pro Y90 ROAW 7X12P NN D WOLLW DN WM | 20 113
NN
reac 077 oy X127 01D0W T 229P0 2P D | 10 18:25 |114
DORY W 7777 NN
pro "oy DORY MW XD 071 AR 23 | 777 115
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reac 877 Sy PYTa | 201 116

pro 072 21927 IWHOHR MR WP TIW 7PN AR DA IRY | 777 117
DOR2 NN

pro o 277 IR 21022 T TIIR.LIR | 200 118

reac D m>7 5Y 9"y 31 Sy NI 7120 R ok LRY | 717 119
9702 777 IR

reac i M2 %Y 719 Hva RY 7 9aR...2men By | 20 120
221X

reac D N2>y mn 9v 19 Hya | 170 121

2Pms DT 122

ano% nnam TA 150
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10.4 Appendix D — Transcript and Channels of communication analysis of Alice and

Ben
1 | Speak | Mathematical Statement Non verbal Ben Alice
er Channel | Channel
2
3 | Alice A moves to sit Inter-
next to B’s personal
desk
4 | Ben This is a 15 minute question. | Writing on Private
Are you ready? paper
5 | Alice | Starts reading question Private
6 | Ben Wait a second ... This could | Looking at Private
just be all zeros paper only
7 | Ben (mumbles quietly, not clear) | Writes on Private
paper
8 | Alice | Reads Claim (above) Looks at B Inter
Yes! Of course! Because it Proactive
doesn’t matter if
9 | Ben Looks only at | Private
paper
10 | Alice | It means like always? Looks at Ben Inter
Proactive
11 | Ben Is there a vector that you can | Looking down | Private
add to this set will
uhh...ummm..uhh..
12 | Ben The question is - its a Looking down | Private
combination of these ummm
vectors...ummm...wait a
second.
13 | Ben Umm It is a combination. Looking down | Private
14 | Alice | I don’t know if it’s always Sits up Private
true. suddenly
15 | Ben Yeah. It is true. It is true. Matter of fact. | Inter
Reactive
16 | Ben If this is linearly dependent | Looking down | Private
then this is linearly
dependent
17 | Alice | But what if we add... Inter
Proactive
18 | Ben Forget it, it doesn’t matter — Inter
its true Reactive
19 | Alice | Always? Inter
Proactive
20 | Ben Uhh.. so.. Inter
Reactive
21 | Ben If this is a linear dependent Private
set, then there is a..
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22 | Ben Then there is a... Private
23 | Ben One of these that is not zero, Private
24 | Ben then one of the alphas, one Private
of the coefficients is not
zero.
25 | Ben Like the coefficients are Private
alpha, alpha times ; beta
times
26 | Alice | Yeah? Inter
Proactive
27 | Ben OK. Nodding Inter
Reactive
28 | Alice | Signing attendance sheet
29 | Ben Ul,u2 u3, u4... Linear Private
dependent, therefore ..
30 | Ben now we’re going to have ... Private
ok... sooption 1 : u...
alphal is equal to,
31 | Ben negative alpha ul is equal to | Staring at Private
ummm.... beta u2 + gamma | ceiling
u3
32 | Ben Now ul is equal to... do we | looking at Private
even need to do it this way? | paper, talking
to self)
33 | Ben I don’t even know... fine... Private
beta over alpha gamma over
alpha....
34 | Ben so we have represented the To Alice Inter
ul vector , in terms of a Proactive
combination of the other
vectors.
35 | Ben It shouldn’t be 1 it should be | To self, Private
three, I’1l change the 3 to 1. | correcting
paper
36 | Ben It’s usually the last one. To self Private
37 | Ben This basically means that To Alice Inter
alpha is not equal 0. That’s Proactive
all that means.
38 | Ben I don’t know. I’m saying that | To paper Private
they’re linear dependent.
39 | Ben We’re saying that alpha ul To self, Private
beta u2 gamma u3 umm..., | writing on
paper
40 | Ben where alpha beta gamma are Private
not all zero... equal to zero
41 | Ben So if one of them exist,, we | Stares at Alice | Inter
can divide by it. until she nods | Proactive
42 | Alice | umm hmmm nodding Inter
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Reactive

43 | Ben We can work with it, this To paper Private
one here will be a
combination uhh...so...
44 | Ben if you add another vector.... | To paper Private
45 | Ben if you add u4... then...we’re | To paper Private
going to have
Alpha ul beta u2 gamma u3
thetau4 ...
46 | Ben now we want that to be equal | To paper Private
to the zero vector...
47 | Ben in order to check whether or | To paper Private
not they’re dependent or
independent.
48 | Ben And we know that alpha is To papere Private
not equal to zero.... umm...
wait a second... wait a
second...
49 | Ben What do you think? (To Alice) Inter
Proactive
50 | Alice | Yeah, it works Inter
Reactive
51 | Alice | because if you subtract, Inter
right? subtract, minus all of Reactive
this stuff and divide by alpha
then you get, you get ...
52 | Ben negative beta over alpha u2 | Starts writing | Private
minus gamma over alpha ul, | and talking:
53 | Ben instead of 3 cause..., To paper Private
54 | Ben minus theta over alpha u4 To paper Private
equals v3, therefore
LJummm...
55 | Ben Kay, this is not the proof at | To paper Inter
all, this is just like the idea Proactive
of the whole thing
56 | Alice | Why is this ?????  mean ... Inter
Proactive
57 | Ben We need to write alpha and Inter
beta Reactive
58 | Ben Beta exists in all different Inter
Umm ... ok, and also... Reactive
59 | Ben You write it neatly. (the Inter
proof is finished) Proactive
60 | Alice | You want me to write it out? | (laughing) Inter
Thank you. Reactive
61 | Ben Yeah — you can do that. Inter
Reactive
62 | Ben And show that you, we know Inter
this Proactive
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63 | Alice | Ok. Fine, fine Inter
Reactive
64 | Ben We have the idea Inter
Proactive
65 | Alice | Ok. Inter
We have alpha 1, keep track Proactive
of it — yeah?
66 | Alice | Option 1... Inter
Wait - why option 1? Proactive
67 | Ben Well... Because we don’t Inter
know what vector... Reactive
68 | Ben we don’t know which alpha, Inter
beta or gamma is equal, not Reactive
equal to zero.
69 | Alice | You can choose whichever Inter
you want because... Proactive
70 | Ben Technically we have to write Inter
it ... umm... Reactive
71 | Alice | Yeah. But why? (laughing) Inter
Proactive
72 | Ben That (mumble) was Inter
important Reactive
73 | Alice Laughing
74 | Ben Cool. Private
Then we’re going to say
that. ..
75 | Ben This is the definition of Inter
independence, of an Proactive
independent set- right?
76 | Alice | Yeah. You got it. Yeah Inter
That’s, that’s ... Reactive
77 | Ben This is saying that’s true Inter
Reactive
78 | Alice | Yes, itis. Inter
Reactive
79 | Ben Then if you add another one Inter
to that second one, you can Reactive
still divide by the alpha and
then you will have a
combination...
80 | Ben Cause this is not equal to Inter
Zero. Reactive
81 | Alice | But Inter
Proactive
82 | Ben But if beta is equal to zero, it Inter
doesn’t make a difference Reactive
83 | Ben it’s still linear dependent Inter
Reactive
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84 | Alice | But if beta equals zero then Inter
<mumble> Proactive
85 | Ben Yeah, you can still make it Inter
Zero Reactive
86 | Alice | Wait! Let me just make sure Inter
I understood, ‘cause now Proactive
I’'m ... One side satisfies -
Alpha times ...Zero... fine
87 | Alice | Plus, I will take... Inter
Then we’ll take the one that Proactive
has a coefficient that is not
ZC10...
88 | Ben Playing with
pen but not
talking
89 | Alice | Well take vector ul that has Inter
a coefficient that is not zero - Proactive
ok?
So we take
90 | Ben Linear Inter
Reactive
91 | Alice | We can add another vector Inter
to the set Proactive
92 | Alice | and then we’re going to say Inter
umm Proactive
Alpha plus... yeah, alpha
beta gamma
93 | Ben As long as it’s not zero, we Inter
can still bring it over to the Reactive
other side, and divide.
94 | Ben Which gives ... which is a Inter
linear combination ... is Reactive
95 | Alice | Wait. wait. There’s one Inter
more, one more step. Proactive
96 | Alice | You subtracted this. Inter
Proactive
97 | Ben Here’s the zero Inter
Reactive
98 | Alice | How does this show? we Inter
need to show Proactive
99 | Ben This shows that these are a Inter
combination of the previous Reactive
ones
100[ Alice | Yeah. but why does that Inter
matter? Proactive
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101| Ben Because a dependent, Inter
linearly dependent set is a Reactive
linear combination of, has a
vector that is a combination
of the other vectors.
102| Alice | Yeah. But why? Inter
Proactive
103| Ben What do you mean — why? Inter
Proactive
104| Alice | Why? why does that come Inter
from the definition of Proactive
...alpha,
105| Ben It does Inter
Reactive
106| Alice | Yeah, but why? Inter
Proactive
107| Alice | If we subtract u3 from here Inter
Proactive
108| Ben It wouldn’t be zero Inter
Reactive
109| Alice | Then you have 0, the zero Inter
vector. Proactive
110[ Alice | so then you have at least you Inter
have non-zero coefficients Proactive
111 Ben I don’t think that’s the Inter
reason. Reactive
112| Ben | think the reason is because Inter
v3 is a combination of the Proactive
other vectors,
113| Ben therefore is dependent Inter
Proactive
114| Ben and it doesn’t need, it Inter
doesn’t need to be included Proactive
in the set... in order for it to
be... uhh...spanning... uhh,
spanning all the numbers
115| Alice | I agree with you, but I don’t Inter
understand why... Proactive
116| Ben I don’t know why the Inter
theorem works. .. Reactive
117| Alice | Why? Laughing Inter
Proactive
118| Ben I don’t know — ok? Inter
Reactive
119| Alice | Ok we’re moving along Inter
Proactive
120| Ben You ask her why, not me. Inter
Reactive
121| Alice | Ok. Fine. Fine. Inter
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Reactive

122| Ben I’ll write it and if you have Inter
an issue - I'll figure it out Proactive
123| Alice | Ok. Laughing
124| Ben (writing
down)
125| Alice | Can | ask you a question?

(ToTA)
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